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ABSTRACT

One dimensional flow between two fixed parallel walls compos ed
of the same substance but at different temperatures and épaced a
distance £ apart is considered. The hot plate is the evaporating
surface (source) and the cold plate is the condensing surface (sink).
The vapor between the two plates is assumed to be a monatomic gas
consisting of Maxwell molecules. I ees' moment method is used to
obtain a set of six non-linear equationé whose solution, subject to the
boundary conditions of this problem, is possibly valid from free
moleculér to continuum conditions.

Both the non-linear equations and a linearized approximation to
them are solved,

The non-linear problem required the solution of six simultan-
eous and ordinary non-linear differential equations with three bound- |
ary conditions given at each wall. An iterative numerical procedure
was used to match these boundary conditions, For the continuum
limit (Reynolds ﬁumber large), the vapor leaving the hot plate was
found to accelerate rapidly to an equilibrium Velbcity. In the vicinity
of the cold wall, the vapor first decelerated, then experienced a
slight terminal a\cceleration. In the rarefied limit (Reynolds number
very small), the vapor velocity was féund to be essentially constant

across the flow field.



The linearized problem in closed form under the a;sumption
of a small mean velocity is solved. Large and small Knudsen
numbers are examined. In both the rarefied and continuum limits,
the mean velocity was found to be constant across the flow field.
For given emission temperatures and density ratios at the two :
surfaces, the mean speed between the plates varied with Reynolds
number because of the effects of molecular collisions.

The evaporation coefficient is defined here as the ratio of the
actual mass flux to the difference between the Knudsen effluxes from
the two surfaces. Its valuc is nearly one for the range of Knudsen

numbers considered in both the linear and non-lincar problems.
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NOMENCLATURE

B1 = mass constant
B2 = momentum constant
B_ = energy constant

< = vector particle velocity
C. = relative particle velocity

i
— [8R
C = mean molecular speed —};T >

d = distance between two plates

, =1 ter \:ull\/ZRTl ] , 1 +erf [-uz//ZRTZ:]

EI’E

f,fl = yelocity distribution functions for "probe'' and colliding

particles, respectively
fl,fZ = components of two stream vMaxwe_Hian
Fi = external force acting on a single particle
h = specific Aent'halpy
H = total enthalpy

k = Boltzmann constant

Kn = Knudsen number (A/d)

m = molecular mass

M = Mach number (u/a)
n = number of molecules per-unit volume

n_,n

1 = number density functions in two stream Maxwellian

2

N = small perturbation to n

1,2 1,2

Cviii



0
Z
|
2

N
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N+ Nl N2
p = pressure (p = pRT)
-—
q = heat flux vector
Q = arbitrary function of particle velocity
R = gas constant

d
Re = Reynolds number (_p_:__ )

S = speed ratio {u/ V2RT )

t = time

t1,2 = small perturbations to Tl,Z

t_ = tl- tz

t, = b+ ¢,

T = temperature

Tl’TZ = temperature functions in two stream Maxwellian

u = mean velocity in x direction

u,,u, = velocity functions in two stream Maxwellian

U = »’RTI or \/RTH

UI’UZ = small perturbations to ul,u2

X = coordinate in x direction
X ,X, = 2 [2RT

1’42 exP['“l,z 1,2]
a = the evaporation coefficient

= 2
By,2 RT, 2
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y = ratio of specific heats (cp/c")

€ = small parameter

A = mean free path

M = viscosity

v = kinematic viscosity
= V2

Vi,2 T U2/ e

p = gas density

O.. = stress tensor
1]

T..= 0,.tpb..

13 1] p ij
Subscripts

I indicates hot wall

II indicates cold wall
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Chapter 1

INTRODUCTION

When the state of the vapor at a gas-liquid interface is at the
saturated temperature and pressure corresponding to surface
temperature, an equilibrium situation exists. There is an exact
balance between the two molecular processes of evaporation and
condensation. If the vapor and liquid surfaces are not in equilibrium,
then, a net flu.k of molecules either condenses on or evaporates from
the surface.

“In recent years many publications bave appeared dealing with
evaporation from and condensation on a solid or quuid' s-urfaco..
Evaporation either into a near vacuum or into a gas where there are
small deviations from equilibrium at the liquid-vapor interface have
been the two areas most thoroughly studied. Little effort has been
directed towards investigating the evaporation and condensation
process over a wide pressurc ratio range.

Prior to the space program, interest in low pressure evapora-
tion and condensation grew from the study of thin film dcposition,
molecular distillation, and other aspects of vacuurn technology. In
the last decade the field has expanded to include the study of numer-
ous matcrials which may evaporate or sublime in a space environ-

ment. Such processes produced both forces and heat fluxes at the



surfacce-vapor interface which could be of concern to the spacecraft
designer, For example, these forces could overcome the small
gravitational torques required for operation of a gravity gradient
satellite.

Initial work in the ficld of low pressure evaporation was con-
ducted by Langmuir [ 1] in 1913, He was interested in sublimation
of incandescent light filaments and developed a semi-empirical
expression for the rate of evaporation. Since that time many more
experimental studies have been performed to evaluate the evaporation
(sublima t:ip;:) coefficieats of a variety of materials. A compilation of
experimcntal evaporaticn coefficients eblained through 1961 is given
by Paul | 2]. Ic indicated that the majority of materials which have
been studicd evaporale into a vacuwm ai or near the maxinum rate

given by the Knudsen-Langmuir expression for effusive flow

m = 1/4pC (1)

where C = Ny ST}jT and p is the vapor density, In a vacuum environ-
ment, the experimental evaporation coeificient is obtained by dividing
the measured or calculated mass flux by that given in equation (1).
Materials which evaporate at significantly lower rates than the

maximum were generally characterized as those which exist in the

vapor in forms different from the condensate. These conclusions

7

were in agrcement with an earlier study made by Knacke an
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Stranski. [{3]. Paul also noted that unclean surfaces and experimental
errors tend to reduce the evaporation coefficient so that in some cases
the experimentally determined value may be lower than the true
value.

Experimental studies undertaken to determine the evaporation
coefficient for 2-ethyl hexyl phthalate in a near vacuun enVironmcnt
led' Hickman and Trevoy [ 4] to notice the effect of a small back
pressure on the evaporation cocfficient. They found that at a limiting
vapor pressure of 1 the evaporation cocfficient was near unity while
a two order of nﬂagnitude increase in the vapor pressure reduced the
coefficient to 0.75. In a later study with water, Hickman [ 5) again
observed ihe influence of back pressure on the rate of evaporation.

He obtained an evaporation coefficient of 0,25, which was consider-
ably higher than most values given previously,

A n.mnber of theoretical investigations have been conducted in
which evaporation from a surface was studied with a wide range of
back pressures. In 1936 Crout [ 6] considered the one dimensional
problem of evaporation of a monatomic vapor from a surface. He was
primarily interested in evaluating the gas properties at the vapor-
surface interface. To do this, Crout developed a modified Max'wellian
distribution incorporating four conslants. The values of the constonts
were determined by balancing the gas-liquid mass, mornentun, and

energy fluxes and specifying the rate of evaporation.



A similar analysis was performed by Schrage [ 7 } in 1953,
However, he assumeaed a different form for the distribution function
near the surface. The outflow (u:.»0) was described by 2 Maxwellian
distributicn function IO correspending to the emitting surface temp-
eraturc. The back flow (u < 0) wag assunied to he represented by
f0(1+ BU) where B is related to the mass {flux and U is the random
molecular velocity perpendiculay to the suriace., As with Crout, the
's analysis was to evaluate gas properiies at the

objective of Schrage

>

.

inte 1'féce, but the 1ﬁas's flux was an undeterinined parameter,
Schrage studied both monatomic @nd polyatomic vapors.

More recently, Collins and Edwards Lb] studied evaporation
from a spherical surface into a vacuum or inte a pure vapor under
strong nonéquilibrium conditions., The. objcct of this investigation
was to determine the cffect of m -:;‘iccuiar back scatter in the encomn-~
passing vapor cloud on the rate of evaporation for strung nonequili-
brium conditions. The continuuwu assumption was applicd and both
monatomic and diatomic vapors were considered. A Grad repre-
sentation for the distribution function was used to permit the connec-
tion of the surface boundary conditions and the gas dynamics in a
consistent manner, It was found that for evaporation into a vacuum
with infinite Reynolds number, tho evapcration coefficient was
independent of surface temperature and equal to 0,8116 for a mona-

tonic gas and 0,7778 for a diatoruic gas. Evaporation into a hom.o-



geneous vapor was also studied. The evaporation cocfficient was
found to be greater than one in certain cases. In both problems the
rate of evaporation was determined not specified as it was in Crout's
[6]) and Sch.rage's [ 7] case.

Within the last two years three papers have used Lees! moment

/

technique [9] to approximate evaporation and condensation phenom -
enon,

Patton and Springer [ 10] studied two quasi-steady problems:

i} evaporation from a plane surface into a vapor

ii) flow between two parallel plates at different temp-

eratures,

In their analysis the vapor is treated as an ideal gas composed of
monatomic Maxwell molecules, with a Lees' »representation of the
distributioa function. They employed four moments (mass, x-
momentum, energy, and x-heat flux where x is the direction of
motion) of the Boltzmann equation and solved a linearized form of the
resulting equations in order to obtain an analytical representation for
the mass flux in terms of Knudsen number for the two problems
considered,

In a similar manner, Sampson and Springer [ 11] investigated
the evaporation of a spherical drop into a pure vapor. Again four

moments were taken and the resulting equations linearized to obtain

the mass flux. They also considered droplet evaporation into a gas-



vapor mixture,

Both condensation of a vapor on a {lat surface and evaporation
from and condensation on a spherical drop were studied by Shankar
[12]. Besides solving both problems using the quasi-steady assump-
tion, he also obtained a solution for the nonsteady flat plate conden-

:
sation problem. Shankar used the same four moments that were
employed by Springer and his associztes to determine the mass ﬂu);
for both problems. Furthermore, he solved the liquid-vapor inter-
face (flat surface) problem with a six moement method and found
essentially the same expression for the mass fluk as given Dby the
four momnent procedure. He did not coasider the two plate problem,

The advantage ol Lees’ { 9 J multiple moment kinetic thecry
technique is that it affords a method of solution which is in some
circumstiances valid over the range of flow conditions from free
molecular to continuum. The corresponding equatibns are, however,
so complex that even with a one dimensional evaporation problem it
is necessary to linecarize the moment cquations in order to obtain an
analytical solution. There is, as always, a question regarding the
range of validity of the lincarization. I'or example, the linearized
four moment method uscd by Springer and his associates and Shankar
to solve the flate plate and spherical problems does not allow for a
near equilibrium condition to exist with mass flux. Further, the

small parameter used to lincarize the equations is the mean velocity.
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Thus, a problem arises in the case of sumultancous small velocity
and high Reynolds number limits.

In the present investigation the problem of flow between two
parallel plates at different temperatures is solved numerically for
some cases using Lees' moment method. The influence of the

/
induced vapor cloud on the evaporation rate and the vapor motion
between the two plates can be studied over a range of flow conditions.
Six moment equations are used along with the proper boundary condi-—l
tions.

Both the non-linecar and lincarized problem are solved. The
non-linear problem is a two point boundary valuc problem which is
solved numerically., The solution to the two plate problem is given
analytically for the case where the equations may be lincarized as
small deviations from equilibrium.

Several simplifying assumptions are made. They are: the two
plates and the vapor are composed of the same substance; the vapor
is a monatomic gas consisting of Maxwell molecules and obeys the
perfect gas law; the accoramodation coefficient is unity, i.ec., every
molecule that strikes the surface will be absorbed by it; and a
Maxwellian distribution corresponding Lo surface temperature with
zero mean velocity describes the molccules emitted by a surface.
The possible effect of surface structure on the evaporation and con-

densation rates is neglected.



Chapter 2

KINETIC THEORY FORMULATION

2.1 The Boltzman Equation

In fluid flow fields where large gradients occur, translation
non-equilibrium effects are observed by the presence of viscous
stress and heat flux. For such flows the Maxwell distribution func-
tion does not adequately represent the translational molecular
velocity and it is necessary to obtain other expressions describing
the physical process. Consideration of the conservation of mass,
momentum and energy in the absence of external forces rcsuits in
five differential equations describing a larger number of dependent
variables. For Newtonian liquids and perfect gases at nornal
densities it is possible to empirically justify additional constitutive
equations and an equation of state which allow the' number of depen-
dent variables in the conservation cquations to be reduced to five.
For gas flows at lower density the constitul'i.v'e cquations are not valid
and it is necessary to approach the problem from a different point of
view,

A number of methods have been developed to describe gas flows
over a range of gas dynamic regimes. The most complete of these

is to follow all of the particles in their collisions throughout the flow

jo 4]
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field, Such attempts have met with little success becé.use of the
great complexity, although Monte Carlo techniques which follow
representative molecules are being ﬁsed successfﬁlly in some
problems. In lieu of following the dynamical trajectories of separate
particles it is mathematically feasible to represent an approximate
variation of the particle distribution function throughout the flow,
Such an approximate formulation is applied in this investigation and
is described briefly below.

The variation of the molecular distribution function is governed
by the Boltzmann equation. >This equation can be derived either by
introducing appropriate time averages into Liouville's equation for
an N particle Sys tem [ 9] or by writing an equation for the rate of
change of the number of particles in a given velocity range (Vincenti

\

and Kruger [ 13 ]). It has the form:

>f 3f > > -

..__+ ._._..__+ ——— n = ! 'y . f s

R f j Lee)f(e)) - (e )ile )y dade, @)
J J 'mdAc

where f is' the distribution function, V is the relative velocity between
colliding molecules, and dA_ is the generalized differential collision
cross section. Integration is over the velocity space of the colliding
molecules. From left to right the terms of this equation may be
interpreted as the rate of change of the number of molecules of class

Ci which results from convection, external forces, and collisions
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with other molecules. There are two implicit limitations .of the
Boltzmann equatim} [ 13]. First the range of intermolecular forces
of the gas must be small compared to molecular separation which
must in turn be small compared to the mean free path., Such a
limitation corresponds to the assumplion of a thermally perfect gas.
Second the distribution function must not change appreciably over a
distance of the order of the range of interparticle forces or time
interval of the order of the duration of a representative collision.

For the majority of gas dynamic problems of interest these
limitations cause no problem. The Boltzmann equation is difficult
to solve because of the numbers of molecules involved and because
of the cumplexity lsiroduced by the non-iinear coilision integral.
As a result it is usually necessary to introduce approximate methods.
A number of techniques have been developed which exploit the possi-
bility of lincarizing the collision integral term. Unfortunately, none
of these methods give results applicable over the range of flow
regimes from free molecular to continuum and it is necessary.fo

introduce another forin of analysis.

2.2 Maxwell's Equation of Transfer
The difficulty inherent in an attempt to solve the Boltzmann
cquation directly is not the only motivation to find another kinetic

theory formulation, Masxwell recognized that it is not the distribution



ll.

function its elf that is of interest but certain lower moments which
correspond to physical variables of interest. As a result he devel-
oped an integral equation of transfer for any quantity Q which is a
function of particle velocity, In generél, sx;ch an expression may be
d_eriv;d either by considering the sources of change of Q in the physi-
cal space or by multiplying the Boltzmann cecquation (2) by Q and inte-
grating over velocity space. ’fhe resulting equation is known as

Maxwell's equation of transfer and takes the form:

30 3 °Q  _
=t Bx,_(c Q)—Fj Yl Al Ql
J J
(3)
o« «©
=[] Je-emvasec e
@ -o dA
C

where (Q'-Q) is the change in Q(Ci) resulting from a molecular
collision and V is the relative velocity between colliding molecules.
Integration is performed over the velocity space of both the probe
particle of interest (unsubscripted) and the colliding particle of a
di-fferent class (subscripted 1). As before, dAc represents the
general expression for the differential collision cross~section.

As with the Boltzmann equation for the distribution function the
terms above may be interpreted from left to right as the rate of
change of Q in a fixed Vo].u;ne due to particle convection, external

i
forces, and collisions. In this expression the distribution function
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does not appear explicitly but rather as a weighting function, the
form of which is discussed subsequently. In this manner the
Boltzmann equation for the distribution function is not satisfied
locally but rather in some average sense. Such an épproach is
ana104gous to the integral techniques used in solving boundary layer
equations.

The cquation of transfer given above cannot, in general, be
reduced any further without a knowledge of the distribution function
and the details of the collision process. However, if Q(Ci) repre-
sents the mass, momentum, or energy per molecule, these equations
simplify. For such fuactional forms of Q conservation of mass,
momentum, or energy during elastic impact require that the right
hand side of equation (3) be zero. For these collisional invariants a
system of equations is obtained which is independent of the collision
process. These equations constitute a coupled set of five differential
equations for the conservation of mass, momentum, and energy of a
monatomic gas occupying a fixed volume in physical space. Depend-
ing on the form taken for the distribution function it is generally
necessary to consider additional moments to obtain the propef
number of differential equations for the undetermined functions in
the distribution function. It is in evaluating these '"higher' moments

that the details of the collision process must be specified,
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2.3 Maxwell's Inverse Fifth Molecular Repulsion Model

The collision integral on the right hand side of equation (3)
may, in principle, be solved for any arbitrary distribution function
and law of 'force between colliding molecules. Practically speaking
it is desirable to chocse a law of repulsion which affords the greatest
mathematical simplicity yet retains the non-linear character of the
collision integral and the short range interaction behavior implicit
in the derivation of the Boltzmann equation. These considerations
prompted Maxwell to suggest an inverse fi{th power repulsion law

which takes the form

F = m.m.Kr > (4)

where K is a constant, r is the distance between centers of molecules,
and ml and 1n2 are the molecular m.ass‘.

The inverse fifth power repulsion law does not provide a
particularly accurate description of intermolecular forces, however,
it does allow one to simplify the collision integral. For this repul-

sion law the relative speed of the colliding molecules vanishes under

the integral and the collision integral may be written as

AlQ ] = /(m1+m2);.<: ”fflmz dE'l  (5a)

where

00 2 . :
J= j J Q'-Q)de a da (5b)
(o] [e]
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and ¢ and a are parameters describing the collision process. Thus
for Maxwellian molecules the collision integral may be interpreted
as the value of J averaged over the velocity space of the two partici-
pating classcs of molecules. Furthermore, Jis proportional to the

value of Q and is independent of the velocity distribution function.

2.4 Lees' Bimodal Velocity Distribution JFunction
All that remains to complete the kinetic theory formulation is
an expression for the velocity distribution function. Although the
form of the distribution function to be used in solving the equation
of transfcr is not unique, basic requirements to be satisifed aré:
i) It must have the '"two-sided' character essential to
rarcfied gas flows.
ii) It must be capable of providing a S'mooth‘ transition
from rarefied flows to the Navier-Stokes regime.
iii) It should lead to the simplest possible set of differen-
tial equations and boundary conditions consistent with
i'equiretnents i) and ii).
Guided by the limiting solution for free molecular flow, Lees
[ 9] suggcested th'at the distribution function take the form of a
Ntwo-sided!' Maxwellian. At a given point the contributions of the
two "'sides' are determined by line of sig‘ht. This is illustrated

schematically in Figure 1 for a spherical body placed in an unbounded
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Figure 1

Cone of Influence for Two Stream Maxwellian
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free-molecular gas with diffuse reflection at the body surface. At
a point P, particles with velocity vectors lying within conical Region
I are described by a Maxwellian corresponding to the velocity and
temperature of the surface. The distribution function for the re-
maining particles emanating from Region II is the free-stream
Maxwellian.

In the general case the two regions are determined by the line |

of sight principle and the distribution function takes the form

-y
¢ in Region I

3/2 [c- u(l t)]

l ’
== 50| e | exp{- ———
- ‘-é'nt(ll(r t) - . f-Kll(l,t)

6)

¢ in Region II

—_ S

3/2 [c-u (1 t)]z
f= f =n, (' t) —_—— .
] [anT e t)il GXP{ 2RT, (7, t)

In these two expressions n, 2(r,t), u (r,t), and T (r,t) are ten

s 1,27 1,2
undetermined functions of space and time. It is then necessary to
determine these functions by solution of ten simultancous moment

equations. When these functions are specified, all macroscopic

quantities of interest can be evaluated.-



Chapter 3

MOMENT EQUATIONS AND BOUNDARY CONDITIONS FOR
THE F1LAT PLATE EVAPORATION - CONDENSATION PROBLEM

3.1 Problem Definition and the Distribution Function

The present investigation considers the two plate problem. The
surfaces are maintained at unequal temperatures and external forces
are ignored. Emphasis is placed on understanding the physical
behavior of a éingle component vapor between the two bounding
surfaces. It is asswned that the two surfaces are maintained at
constant temperature., The ho-(: wall is the evaporating surface
(source) and the cold wall is the condensing surface (sink). 1Itis
further assumed that the vapor between them is monatomic, obeys
the perfect gas law, and consists of Maxwell molecules. The process
is quasi-steady,

The problem is illustrated schematically in Figure 2. The hot
plate, at temperature TI’ is located at x = 0 and the cold plate, at

4

temperature T is placed at x = %2, For this problem gradients of

Ir’
physical variables and parameters in a direction parallel to the

plates are zero. As a result, the expression for the two-stream

distribution function may be written

17
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c >0
X
)

3/2 (c - u (x) + c2+ c2-

f=1f (x)=n (x)[——}--—-———] e‘cp{- s ! y =
1 1 ZTIRTl(x) o ZRTI(X)
(7)

c <0:
X

2 2
3/2 (c - u, (x) +c2+c

=10 = m et - )

2 2 ZTRT,, (x) exp 2RT, (x) I

In these two expressions, n (x), u (x), and T (x) are six

1,2 1,2 1,2

undetermined functions of the independcent variable x, With this form
of the distribution function the six parameters may be evaluated by

simultaneous solution of six independent moment equations,

3.2 Equations of Transfer

In obtaining these equations, it is desirable to consider the
lowest moments of the Beoltzmann equation for two reasons: first,
they allow the greatest degree of mathematical simplicity; and
second, the '"lower'' equations generally involve moments of the
distribution function which may be interpreted as physical variables
of interest. With this in mind, the six lowest independent moment
equations will be developed; this will involve choosing successive
forms for Q(Ci) that represent the lowest power-s and combinations
of molecular velocities.

As discussed previously, choosing Q(c.) to be the molecular

i



20
mass, momentum, aad energy results in moment equations which are
conservation equations for the respective quantitics. For these
values of Q(c.) the collisional term is zero and in the absence of

1 .
external forces the generalized moment equation (3) becomes

successively

0 e} —
— 4 ——— = .
sp (P) T o5 (e Cj) 0 | (8)
J
0 3 -
—_— 4 =
ST (P )t 5 (P ) =0 (9)
J
0 5} 2 :
selpc) t 5 (o CjC)—O (10)
3
where cz = L ciz. For the stcady-state ond dimansional problcns of

interest, time and the y- and z-derivatives are zero. Thus, the first

three independent moment equations are:

= m: 4 0y -

Ql = m: I (p cx) 0 (11)
e d 2. |
Q2 = me : P (p Cx) =0 (12)

L2 d 2. _
Q3 =mec /2: T (p ¢ © y=0. (13)

Expressing these equations in terms of physical variables is
facilitated by equating the molecular velocity to the sum of the mean

and thermal velocities
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c = ¢ +C =u+C . 4 (14)
< X

In terms of the thermal velocity the following moments of the distri-

bution function can be identified:

——t—

0'ij = -p Cicj = Tij- péij - (15)
3 1 2

- k = .

> T 5 p C (16)
A | 2

Q. = 5P CiC . (17)

In addition, thc following equations are appropriate for the distribu-

tion function and gas model assumed

n = Jf dc (18)
p = nkT = pRT (19)
P _ 5
= + = = = . 2
h e o 5 RT . (20)

By using equations (13) to (20), the first three moment equations may

be rewritten as

e [pul =0 (21)
-(;l—x-[puz-oxx:] =0 (22)

d 3 u2
a e (FRT+ 5 )va -0 wl=0 . ey
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Integration of these equations yields

pu = mBl ' (24)
> .
pu -0 = mB (25)
XX 2
2
<2RT+ 2—>+' -0 u = mB (26)
PUN 2 2 qx XX 3

where Bl’ BZ’ and B3 are integration constants.

The next higher moment equations are obtained by setting

The resulting equation of transfer is interpreted as an expression for
the {lux of momentum, mck, in the x. direction. For this value of

J
Q the collision term on the right hand side of equation (3) is non-zero

and is evaluated by Lees [9] for Maxwell molecules. In this

problem, equation (3) simplifies to

(27)

where j and k may independently assume values from 1 to 3. Three
non-trivial equations are obtained for j = k, although duc to symmétry
in the y and z directions the two independent equations resulling are

_ 2 d
Q4a B nu,x. dx

[ mc ]=-ST ‘(28)



2 d 2 p .
= . — = . pA
Q4b mcy. I= [ mcxcy] v TYY (29)

Adding twice equation (29) to equation (28) gives

(-119; [ m CX(Ci-I- c§+ cz):l = -E- <23 Oii+ 3p>’v =0
which is identical to the energy cquation (13). Thus of equations (13),
(28), and (29), only two are independent; the choice of the two to be
used in the solution for the arbitrary functions will be made on the
basis of simplicity.

The fiftb equation of transfer is obtained by setting Q4(Ci.) =
m cj(cz,’Z) and may be interpreted as the flux of cucrgy in the -
direction. Lees [ 9] has evaluated the corresponding collision

term for Maxwellian molecules and in this case the resulting mornent

equation becomes

2
_ 2 . d 2c¢c 1. p 2.
Q5 mcx(c /2): ——dx[m <. 3 ] ol [ 3 qx+ Txxu]. (30)

The sixth independent equation of transfer is obtained by

. 3 . . < .
choosing Qé(ci) = n‘1cj . The meaning of this equation is less physical,
as is typical of higher moments. It represents the flux of rnc:.a in the

j-direction. The collision integral is evaluated in Appendix A and

the moment equation reduces to



24

—

3 d 7 Pr - 3 3]
=1m . —— m T e +3 - = M . 31
Q °x’ dx [ Cx] V] [ T uTxx 2 cx (1)

In summary, the six independent differential equations of trans-

fer to be used are

d — d

—— = — = 11

dx[mcx] dx[pu] 0 (11)

d 2 d 2 _

—_ E e - =0 12

= [ mcx] - [ pu Gxx] | (12)

d 2 d "3 p u2

—_— =R ~ L+ )+q - =0

ax L™ %© ] dx [pu( 2 p 2 > L Oxxu:‘ 0 (13)
two of

Alu3]-B o e )

a (9% XJ m .XX { ]

d r 2] P -

= L™ Cxcy aliT Tex 0 (29)

d 1 2 c2 pr2

wlme 7]t B3 el =0 60

d 4 Pl . 3 37 ‘

— - — + - — = .

dx[mcx] p.[qx 3u'1'Xx ZlanJ 0 (31)

3.3 Expression of Physical Variables and Moment Equations in
Terms of Parameters of the Distribution Function

In order to solve the above equations for the parameters nl, n2,
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Uy, u,, Tl, T2 as functions of x, it is ﬁecessary to express the
equations in terms of these variables. In principle this involves
nothing more than evaluating the prescribed moments of equation (7)
and substituting them into the equa.tions of transfer. In performing
these operations and in reducing the moment equations to. their
simplest form, a significant amount of algebraic manipulation is
required \x;hich adds nothing to the unders tanding of the problem.
Therefore, the contributing physical variables and higher moments
of the distribution function are evaluated and the final forms of the
equations of transfer are presented without details of the intermediéte
algebréic steps.

The appropriate miomenis of the Lunodal dislribubion funciion
(7) were obtained by using integrals summarized in Appendix B,
Because of the recurrence of certain fﬁnctional forms in all moments,

it is convenicnt to define

_ ul };)
E, = 1 +erf [7?1'{'"(;()] (32a)
E,= 1 +erf|: ZRT ;\)-J (32b)
X1 = exp [—u?(x)/ZRTl(x):l (32¢)

X2 = cxp[ (x)/ZRT (x)] (324)
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and to replace the variables Tl(x) and T2 (x) with

2]
I

= 2RT, (x) (32e)

™
1

ZRTZ(x) . (32£)

With these definitions, the physical variables and higher moments

may be expressed as

1
+ + -~
mEt snE,

N

Ide' =
nu = J'fcxdg 1<u E +\/— 1> 7 2<u E /—— 2/
Oxx = —meCidg = -mjf(cx- u)zdg

'}'mnl{[fél"“‘i]Elf“l\/t?Xl}

_.Zlmnz {[.2‘2.+u§ ]EZ_ uz“/—:ﬁ-;rl XZ} +n'1nu2

H

Q
i
Q
1]

- mecz de
, y

_ 1 1
= —ZlnnlBlEl 4mn B EZ

1 2 3 Bl
p = -3 (0./3) = —6-mnl[<ul+z 81>El+ 0, /TXJ

i
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B
[ 2 1 2
m“z[(z Z 2>E‘ ) "?r'xz:]'?mn“

. m 2, =
q 7JCXC fdc

"

L IE
1 , 5 3 2 2 1
—mn1 {-[-2— (u-ul)Bl+(u—ul) :|E1+[281+u1+3(u -uul):] —;T—Xl}
1 { > 18+ (w-w, ) |E+ [ 28, 4uZ+3 (0@ -uu.) | /—B—Z-X ~
B ) [Z(u'“z Pp -y, J 2 [ p Uy t3(u-uu,) | — 2}
3 - 1
= = + + /
chxdc 2 1{ u1+ )E (B 1> 1}
+ -}-n u3+i B >E B+ 2 —B«%X
2 2{<2 2 %2P2 2<2 “z>'J T z}
B
2 - / A
f CXCydC = -—n1 1Lu E_ + ] ry n B [ - AZ:I
2 ‘ ' B
2 ¢ - 1 5 2. 2 4 3 7 [ F1
chx > de = I nl{[zBl+4u181+ul]El+[ul+z-u181] J Xl}
1 5 2 2 4 3 7 /
+ an{[ 7 82+ 4u282+u2]E2- l:u + - 5 uZPZJ }x }
fc4d-’ = —l—n {[: —3—Bz+3B 2+ 4]}7 + 3+§- ~B—} X
J ST MU TR 1M1 M [ul 2“181:\«/ - 1}
1 3 2 2 4 3 5 » /82
+ = = - = —_
2 “2{[ 7 Pyt 3Byu,t ]Ez [u2+ 2 “sz] - Xz}
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ch3 dc = jf(c - w)de

8
1 3 2 2 2 / 1
= e - -— -+ - - 1, + - ——— S
5 nl{ [2 Bl (u ul) ](u ul)l"l+(81 ul+3u 3uul) p- }xl}

_2_ 2{ [28 + (u- u)](uu )F - (B +u§+J112_3uu )/‘ 2}

Therefore, the three conscrvation equations become

| 3. [ L(oE +\/_‘ 1>+n2<u21:2 /Ex2>]= -(?—X[ZBJ':O (33)
dx[n {<a+“l>E fu «/_ }+“2{< 2 2>E /—XZJL
- dx [ZBZ] =0 | | (34)

i 1{<zus+u>F+<ze+u>/‘}
B
+“2{<'25'“282+“:34>E2" (282+“2>«/—;—;X2}: ;;[4]33]:0 - 39)

Similarly, the remaining moment equations may be simplified by

combining terms and by utilizing the integration constants Bl’ BZ’
and B3 to yield

v . B :
d 3.3 2[5
dx [ ny(uytsw B E ) B tu) = X
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B .
) 2 2
+n, (113+3 2B5)F,= 0 (B, + ur) /?Xz] (36)

- — - = + EY + - B
3 [:2 nu 332 > (nllel nZBZLZ)] 0
3 B
d [ L N 2
J[ n 8y (9B “{Xl)“’sz(“zEZ' 7X2>]
| 67)
2 p 2 1
P alze 2Byt s s Ee) = 0

-C—{d;[n (-L%Bi-f- 4u B +u1>E1+nl<ui+.;_ulsl>/E_;X
2('45' §+4“ P +“2>E z<u2+z“2 z)/— x,] 68

p =
£ - + + =
o [ZB3 u(B2 nlBlE1 nZBZEZ)] 0

+
BT IRN

[ 1(46 + 38 u +u )E +n <u +2u1 1)/_-

+nz<4 By * 38,4, Stu ) “2” 2<“z+z “282>«/l ] (39)
2'E{-ull:BfL;}l-(nlBlEl*-nZBZEZ)]+2B3 i n 8 (B +~/B-nlxl>

B
- 231'“282 (“zEz' «/'_'_TZTX2>} = 0.
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3.4 Non-Dimensional Equations and Boundary Conditions
Non-dimensionalization of the physical variables and moment
equations is accomplished by introducing the following definitions

x = dx

n n

1,2 17,2
T Uu s,

_ ez
Bi,27 UBL2

where the characteristic velocity U = /RTI

and variables subscripted
I are evaluated at the surface of the hot plate, Note the cold plate
could just as easily be used as a reference. The viscosity law for

a gas composed of Maxwell molecules (Appendix A, equatibn (Al14))

is
. T =
o= T UI = THI-
I
With this result, the coefficient = . — becomes
p d n Re _ —
= - = = n Re
uu M

where the Reynolds number is defined by

pI Ud
Re = ——— - (40)
v
1 .

and \/_Y-M = 1 because M =
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For spherical molecules the relation between viscosity and the

mean free path . is

pC ).

-
1l
N b

Hence, the Reynolds numiber in this problem can be related to

Knudsen number (Kn) by

nj

% = _ (41)

7o)
[¢]

1l
N\
vy
/

where Kn = \/d.
In terms of the non-~dimensional quantities, the intcgrated

conservation equations and physical variables of interest become

continuity
n £ n. B.
1r — /71 2 [— 2 - -
— + | —- + — 3 - [ — = =
) [“1E1 m Xl} 2 {QZEZ T ‘{2] B=nu (42)

X-momentum

AL B 25, g

= B, (43)

NN

energy

D Gaae ey i
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R R () 2] T,
H=13E+-1-HE=§/‘E (45)
27171 2 22
pressure
B

¥ ?i';z[< % 2>E «/_' 2] ) l;;{;z | e

normal shear stress
5, . 5

_ 1 l—[—=2_ ~— 2 2 ——=2
'rxx— ——-nl[u E+u - X1]~3Q2[ uZEZ-uZ' ?X2]+§-nvq
heat flux
3 = +in (G )Rt @u e+ 2's'+‘2+3_2’"')]/-8_1
% T 1{ [2 e KA T ] 1 [ yFupt3fe-uy —W—XI}

2

-3 5{[ 2 @R, A, B, 25,0 543 @ -uu]/ x,}.

(48)

The evaporation coefficient is given by
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2/ B

. (49)
8RT _
% A= % — ( % o)

TT

The remaining four moment equations are

x-momentum f{lux

d - [r=3,3
a—;;{nl[ul+-2—u -]E +n (B +u

""'N
™|
ot
w

| , (50)
n (B, +u / 27 0% 2B+ nB.E +nB E
-nZ(BZ u 2}——Ren nu -2B (n.B n_ B )}
:0-

~momentim flny
Yy

dii[—lgl u Bt /'—'\ 1>+“ 8,( »/_ 2)]

l — —_— —— -
2t ~2‘(“181131+“szEz)_l =0 (51)

+ -3-ch|:2B —u(

C‘l
-
=
_
]
1
-l
lws]
&=
(WS}
v
L
!
(@]

(52)
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2
x-flux of ¢
X

E 1>/—

r:l

d L5
= + 2
: [1(48 3B“+“1>E+“< 3

+ 2Re?§{-§[§2+
B /8
3= = P1 3= = 2
— + - — - — = .
308, (9B E %) 7755 5 Xz>} 0- 3

The boundary conditions for this problem are established direct-
ly from the assumptions rc;lated to the nature of the flow at the two
walls. In the absence of any conclusive evidence to the contrary 1t
is assumed that all incident molecules are absorbed and thermally
accommodated at the wall surface. Furthermore, molecules are
emitted from. the surfaces with zero mean velocity and with a local
Maxwellian distribution corresponding to the plate temperature and
the number density of theAsatgrated vapor at that temperature.

Mathematically these assumptions are equivalent to the

follewing boundary conditions

u, =0 u, =0 (54a)
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]
i
-
w|
H
N

1 I 1
atx = 1
n, = n, -1-1-2 = nH/nI |
u, =0 HZ =0 ' (54b)
T2 = TII 82 = ZTII/TI
and T_>T__.

I 11



Chapter 4

THE LINEARIZED TWO PLATE PROBLEM

In order to find an analytical solution to the non-linear
equations (42) to (44) and (50) to (53), subject to the boundary condi-
tions (54a) and (54b), a small deviation from equilibrium is consi-
dered. This approach, and the resulting equations are identical to
those given by Shankar [ 12] but different boundar&r conditions will

be applied. The first order perturbation solution is found by using

1 1

n2=1+N2€+ .o

"I-‘_lfl*-fle+... (55)
T. = +— +oo.

T2 1 tze

|
1]
[ 2
c
+

are of 0(1).

where ¢ is a small parameter and Nl,Z’ t1,2’ and Ul,Z

Definitions (32a) through (32f) become

'B'1= 2(1+te+...)
§2= 2(1+?2_e+...)
E = 1+'«/—-ZE[—J-1.6+... (56)
E2= I-Eﬁzgir...
- 36



37

o
I

2
1 +0(e) +...

1+0(e:2) +...

>
"

where B = 2T. The boundary conditions are

atx =0
(n._-n)
Ny = LT N (572)
I 1I
_ (TH' TI) AT —
t, (0) - == = - = - AT
1I II
0) = 0
Ul( )
at;=1
N,(1) =0
£, (1) = 0 (57b)
U, (1) =0

where AN and AT are of O(e). The cold wall conditions are used as
the references values in solving the linearized problem. This is 4
consistent with Springer and Patton [ 10].

By placing equations (55) and (56) into the moment equa.tions

(42) to (44) and (50) through (53), we obtain
— — — — n Ll — —
- + - — = H
Z(N1 NZ) T1 T2+ 2,/ > (U1+ UZ) Bl (58)

—_ e — e 2 = - -
TN,+T +T +2,[ = - = '
N +N 1T T2 = (U U,) = 2B} (59)



where

—— — —— — ‘n’ — ._.. - .—‘
N,- N,+3/2(T;- T,) + 5/4 /2 (U, +U,) = B}
—‘-1-(&*'-1'\7+3/2('17-T—)+3/2 [ (T.+T.))
dx 17 2 1”72 2 1 2

_ [ 01- %)

N2 3Kn

_4_(1\‘1 W N +3/2(T.- T )+ /2 (U,+0.)
dx 17 2 1”2 2 17 72

(U,- T,)
_ m 1 2
_1/3*/;- .Kn

1 —
=z e | 2(10 - - -
3Kn l_ (Nl NZ) 7(Tl T,)

qu [@(ﬁ” Np) +6(T +T,) + 8\/_%- (U, - ﬁz’)]

1

&I
n
.Y
o3
&1
. Yt .

joc]
il
fa—
+
|

e}
w—
H
o)
Wi
W

—_— - —_— - [2 — =
= (5(N; + NZ) +10(T  + T,) +12 = (Uy- U,))

2Kn (Z(Nl" Ny - (Ty- Tz’)

38

(60)

(61)

(62)

(63)

(64)

(41)
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and Kn = \/d. Define

N, = N+N, N = §-R,
E, = ttE, b= t-E, (65)
Vi T ovity, Vo T VY,

where ﬁi = Vanm ;i. As previously indicated, only two of the three
equations (60) to (62) are independent. The six equations that
Shankar [ 12] used to study condensation at a liquid-vapor interface °

are utilized in this work. With the aid of the above definitions, we

have
2N_tt +2my, = By (66)
N, +t +4y = B! (67)
7?_ -2N_ = zﬁé' (68)
d o= - - n -
E.}_{—.(N_+3t~+2n\)+) = 2/3R'F v (69)
. Ell
d ,_— - - 3
§(5N++10t++24v_) = -2/3 = (70)
d T = — - 1 - = H
a:—£(3N++6t++16\)_) = —I<—;1—(3t_ -B.) (71)

where equation (68) is found by corhbining equations (58) and (60). It



10

should be noted that equation (68) is exactly' q(l) = constant where

cj (heat flux) = q(l)e+ cee .

The solution to the above equations is

_ - B"
- - + :
t = pe M +Ee Ax+—§-

: 2B,

t+= 0'1-15 x}-3D,’

— + =
\)=3/2E/ﬁ' AX-3/2D/ -hx

~ H

B" B

= . 1,73 4D -Ax 4E +Ax
\)+ 27 57 n i
gl “[s; !'A:
N = 7/2De +7/2 Ee -3/10 B"

- 3

_ _ ZBX
= LI
N, = By - o 15 +3D<2«/ 57 "N 5m >
2 5 +Ax
+ /—- /-)
3E< 511 2 21 ¢

1

where A= >Kn

/2 +Ax
51 e

(72a)
(72b)
(72c)
(72d)

(72¢)

(72£)

/5
—ZTI and D, E, and ozl are constants to be deter-

mined. By using the definitions given in (65), we {ind that equations

(72a).to (72f) can be written as



L »
. ‘ ZE'"
21'\1'1-: E;- al-3/10 Eg+ +<7/2+ 24 )De
(73a).
+ (7/2 - -—2-?—->Ee+
' vV 10w
- ZE;; 24 Ax
2N, = B)- o +3/10 B} + 15Kn+< -7/2>De
v 10m :
(73b)
AT
- (7/2-+ 24 >E)e Ax
vV 10m
2 -— — EH
— 6 Ax
Zt'—‘a -———-—+ 1+—-———>D x+ 1———>Ee —_
l‘ 15Kn < ( /1o 5
(73c)
:5)% B _
Z-t— = o, - _..__2_.__ - ..é-'*' eAx
2 1 15 Kn 5
(734d)
-:'B"u :'B‘n . -
- 3 4 [5 -Ax __/ )
Z\)1_ i1 ?ﬁ-<n+3/2 ZTT)D,e ™ 2N Ee
(73¢)
En B,, . _
- 4 3 5 Ax
ZVz“‘z?:*"“(“"‘«/ )D ‘CF*EJE?)EG -
(731)

Application of the boundary equations (57a) and (57b) to equations

{73a) to (73f) yields
)E (74a)

-2AN = :'B'é- o, - 3/10 }'3';'+<§-+ 24 )D +<%- 24
/101 /10
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2 . B"
4
0=B'-0 +3/10B"+< --> A >E
2 \/——T-l- (2 15 Kn
(74b)
hegt § |
- = + e—_ — ——
28T = o+ =+ (1 + )D + (1 )E (74c)
ZEH "
0 = o - = -(a+ - )EEA (74d)
- V10 _
EII E” .
1 3 4 3 / 5 4 3 / 5
S U — — — - —_—— —— ——
0 FAL 5n <n+ 2 211>D (n 2 2n>E (746)'

R R It TP

These six equations can be solved for the unknown constants ]—3;'1', E'Z,

D, E, and «.

-A/2
Let D = D'eA/2 and E = E'e -A/ . Then:

11
B3,

A ) A A
sinh 5 - 4 cosh — ) + AT( sinh — + 14 cosh —2->

AN (" j— 2
B = 10m J10m
3 -132 .. A ' A 8 sinh A/2 6 cosh A/2
Slnh'é-- 4 cosh =— - —— -—-f{—-— -g K
5v10m V107 n : n

(75a)

2 2 — 3 2 1 —
(—5- ﬁﬁ)”*(ﬁ*ﬁﬁ)”.
132

A T 8  sinh AJ2 6 cosh A7Z
sinh 5 - 4 cosh 5 - - T TR
5/10m /10w n

(75b)




L3 .

, _ '
o, = (-;-+i‘3‘5- R%)B;WZD' cosh-24+_12D sinh-zl1 ' (75¢) -
/10w
ﬁll |
- t
B'Z = - T%_ + 9D' cosh % + 60D sinh % (75d)
v10om
E'l' = - -25- B! + 16D' cosh % + 6n ’_ZS—TT D! sinh-g— (75e)

Now, it is possible to examine the two limiting extremes Kn ~0

and Kn - ®. For Kn —-0, we have

-1.66 AP , AP = (AN + AT)

o
"

1

~ _  /2n —

B, = -—5— (.83) AP (76a)
}3‘2 = AP (76b)
B3 -0 (76c)

and for Kn » =, we find that

B) = -2AN - AT

—_— 1 [2 _— —

By = -3 /ﬂ (-2AN - AT) (772)
E'z = AP (77b)

1!

o]
1
>
2
]

[\ BN
>
=]

(77¢)
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When Kn » © (free molecular limit), the mass flux B, to 0(¢) agrees

1
exactly with the Knudsen-Langmuir expression. In the continuum
limit Kn ~0 the mass flux to 0(c) becomes independent of the temp-~
erature difference and depends only on the pressure difference. |
This result agrees in form with Fuchs [ 14 ] and Shankar [ 12 1.
Finally, the beﬁavior of the density and velocity in the flow
field between the two plates is established. The number density is

defined by

n = 1/2(0E +n,E) . (45)
In terms of perturbed quantities, (45) becomes

p = 1+ (/2N +v et (78)

where p = mn. From equations (72c) and 72f), one finds

_ A
— B 9 Byx 12 3 [5 -A%/2
P '1+[—2_"2" ¥ T5&n +<r—-—"z' 7= JD'e
) ' 107
, (79)
+ (.22 +-;—/§—>D'e/\x/2]e+n-
J/10m LG
where D = D'eA/Z, E = E'e“A/2 ,.
2 2 1 3.2 1
m(ied de) (3 rh )
DY = B = N3*'Ts &= AT 5*1s %57/
-132 ., A A 8 sinh A/2 6 cosh A/2
81nh-2--4cosh-2-- wn - Ro
5/Tom Tom Kn

(75b)
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and EZ and o, are given by (75c) and (756) respectively. Equation

(79) at the cold wall can be reduced to

=1 +( - EEB +—D'cosh—+3/ D' sinh 2 >e+-"- (80)

At X =1 (cold wall), we find

Kn -0

Kn -+ «

o
]

1 —
L T L BN ]
1 2A1\+ .

Similarly, for x = 0 (hot wall), there results

2y 22 Ginn 2

- — 7 -
p=1+[-<-———- > "+<—cosh—+
20 15Kn 2 2 m 2

/ 5 ] A .
- = 2 + e
3 Zn 31nhZ>D]e

and the limits are

(81a)

(81b)
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Kn-0
AN<11+ 90 >+A'F<7+—39—->
= /10m /iom 7
(== +2)
V10m
or
- AN(27.07) + AT(12.36) ...
p=1 39,23 teee (82a)
Kn-—-ow
- 1 —
po=l- SAN+-.-. (821b)
The mass velocity is
= — - = =2 -
B, -u/B B, -u, /B
AU E+RWE +n f—e T L.nfZLe % Z
- 11 222__1 n _ 2N (83)
n1E1+n2E2

and in terms of the perturbed quantities U becomes

- 1 —
uE gy N

t +n§3+)e+--- (84)

N =

where N , t , and v, are given by (72e¢), (72a), and (72d) respective-
ly. Atany pbint in the flow field between the two plates and at X = 0

or X= 1, (84) reduces to
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. B .
T ww®f . — s 00 = +...
u > ,TT~ 5 e+ Ble . (85)

The limits for B, as Kn # 0 and Kn ~ ® are given by (76a) and (77a).

1

The density correction to 0(c) at the hot wall, equation (82a),
depends.on the relativ;a size of AN versus AT. Both AN and AT are
negative by definition. If the density correction to 0(€¢) is greater
than zero, then the flow is density dominated (—%—g— < 2,19); but if
the correction to 0(¢) is lesslthan zero, the flow is temperature
dominated <Z[}';; > 2, 19).

From equation (85), it is apparent that the small parameter e
is related to the mean velocity u which results from a small deviation
from equilibrium. The fact that u is constant to O(¢) is not surpris-
ing since

7= 14y My 250

+ oo

= a5 .,

e

and FE = const. Therefore, we have
const,

w2 L@,

which implies

=)

[
0

@) . bt el O}

€2
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but 5-(1) # constant (as previously demonstrated, Kn - 0) so
;(2) # constant,
The cha"rac'teristic Re, Equation (40), is based on a velocity
U= /ET_II which is of O(a) where a is the speed of sound. Re can be

written as

Py VRT d Pp@ d 1 Re u
Re = m = m . = = P (86)
,H II /———RTH Yy M

where y = ratio of specific heats, M = Mach number, Repu is
Reynolds number based on the mass flux pu at‘the cold wall and the
mean veiocity u is small. For extremely small kinematic viscosi-
ties v, large d, or a combination pf both, Repu could.be large when
u is small.

When u is not small, the full non-linear equations must be

) solved.



Chapter 5

NUMERICAL SOLUTION TECHNIQUE

5.1 Solution of Separated Boundary Value Problem as Initial
Value Problem

The six moment equations to be solved for the unknowvn
parameters nl’2 Tl,Z ul’2 form a system of first order ordinarf
non-linear differential equations. Because all dependent variables
are present in each of the equations they are completely coupled and .
must be solved simultaneously. Although three of the equations are
integrable, n;) method was devised to simplify the solution by using
the mixed algebraic and differential equations, Attempts to reduce
the number of dependent variables by the introduction of groupings
were unsuccessful and no feasible analytic integration technique was
developed.

Numerical solution of such a system of equations can be
accomplished by a number of methods if the values of all the varia-
bles are prescribed at one of the boundaries, i.e., if it is an initial
value problem. With the present problem three of the boundary
conditions are given at each surface and as such represent a
separated or two point boundary value problem. Solution of this

type of problem generally involves either quasi-linearization as used

49
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in the last chapter or reduction to an initial vdlue'problém. Because
the free molecular limit allows an obvious choice of initial values
which systematically vary at higher Reynolds number, the latter

approach is used in order to solve the problem for étrong non-
equilibrium conditions.
The numerical solution begins at the first plate (x =0). Here,

values of ;1-_1, u, and §1 are prescribed and the values of the other

1

three variables ;1-2, EZ and EZ are assumed., Next, the derivatives of

the six functions are evaluated at the wall. With these derivatives
known, the six equations can then be simultaneously integrated to x+s
by using a fourth order Runge-Kutta scheme. Here s is the normal-
ized step size. From this -point the proceés of evaluating the deriva-

tives and of integration is continued to x=1, Atx=1 the integrated

values of nz, u2 and -(:-32 are compared to the actual boundary conditions

prescribed for the problem. If the integrated values are not suffi-
-1;2 , and _B-

2’ 2

atx =0 are calculated and the equations are integrated again. The

iteration for the correct values of ;2, 32, and .B-Z'at % =0 continues in

this manner until the boundary conditions specified for n,, u, and

2' 2

BZ at x = 1 are satisfied. Since the sik parafneters atre evaluated at
each step of the integration by using the définifions in the previous
chaptef, the values of the physical variables of interest are det‘er—
mined throughout the flow field. The sPecific details of the

integration method are briefly outlined in the next two sections,
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The complete computer program is given in Appendix C.

5.2 Evaluation of Local Derivatives
To simplify the mathematics of the problem it is convenient to

define the function Yj which represents the six dependent variables so

that
Y, = El(x)
Y, = El(x)
Y32 8 (x) (87)
Y, = Ez(x)
Y, = Ez(x)
Y, = 'B'é(x)

Furthermore, it is desirable to 1éave the six independent moment

e quations in the differential form

Fij(Yj)Wj+ Gi(Yj; Re) =0, i=j=1,6 (Appendix C) (88)

where the derivative W, is

-_— = W, j=1,6

and Fij and Gi are algebraic functions only of the six variables Yj

and the Reynolds number.

The subroutine DRVTV (Y, W,Re) is used to evaluate the local
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_derivative Wj for input values of Y.1 and Re (Appendix C). To do this
DRVTYV calls another subroutine DSIMQ which solves the six equa-

tions (88) simultaneously.

5.3 Fourth Order Runge-Kutta Integration

A number of numerical integration techniques were considered;
however, because of the simplicity in the present application a fourth
order Runge-Kutta integration scheme is employed. For a system of

two first order ordinary differential equations

Yy gl(XsY»Z)- ’ Tz = gZ(X:Y:Z)

the fourth order Runge-Kutta integration for step size s is given by:

o1 5
= y + > (k, +2k, +2k_+ k,) +
Y.t g (k1 2k k k4) 0(s ),

Y+l 2" “%3

' 1 .
= — (L +22
z zn+ Z (J?1 2

: 5
£ 7
0+l +2 3+ 4) +0(s7),

2

where,

kl = s g;(xno Yn: Zn)n

1,1 =sg, (xn, V. zn),

1 1 1
= R + o )
ky = sgyxtss,y tok,z+520))
1 1 1
= . 4+ - — -4 .
Ly=sgxtas,y tsk,z+s4),
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! 1 1

= - +=k,,z + =2,
ky = sgyixt sy tok,zt354)
1 1 1
= + = + = + =4
L3 SgZ(xn 2 5 Yy 2k2' Zn' 2 2)’
= (x + k., z +2.),
k4 Sgl(xn Sr YpT %30 2 3)
L = + + +4.).
4 ng(xn S* Yn k3’ %n 3)

This system of equations is now generalized to allow integration of
six simultaneous equations.

Equation (88) can be rearranged to

= -1 = % i = 1= A
YJ'. = -(F )ijGi—gi(x,Yj) i=j=1,6 (89)

where the value of g; is obtained simply by calling DRVTV (Y, g, Re).

Yi at x+s is found from

- — 1 ' 5
= — +
Yi(x+_s) Yi(x) + 3 (ki1+ Z(ki1+ ki3) +ki4) 0(s ) (90)
where
= % . 1

kil sgi(x, Yj) (_9 a)
Kjpg = sglx + 58, Y4 z 51 (91b)

— 1 1

= —_ + -
ki3 sgi(x + > S Yj 5 ka) , (91c)
= % + i=j=1,6. 1d
ki4 sgi(x + 3, Yj kj3) o i=j | ’ (91d)

To obtain explicit values of the k's in the-'program, use is made of
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the flexibility of the subroutine DRVTV. At point x values Yj and

Wi(Yj) are known, hence

By defining

the subroutine DRVTV (z, W, Re) is called to obtain

1 1
Y = = g (Y. + =
WY F 5 k) = g (X4 5ky)

hence

1
= + - . .
kiZ sWi(Yj 5 le)

Similarly, the remaining terms k,13 and ki4 are obtained by success-

. . , 1 ' -
ively setting z equal to 1i+ 5 k,1 and Yi+ ki3’ and calling for

2

1
N + = k. d W + k
! i(Yj > kJZ) an i(Yj .

_]3)' Once these are known Y-i(;+s) is

obtained from equation (90). The step size is chosen to be 1/Re or

0.01, which ever is smaller,



Chapter 6

RESULTS OF NUMERICAL SOLUTION TO THE
NON-LINEAR TWO PLATE PROBLEM

In this chapter the two plate problem is solved in certain cases
for strong non-equilibrium conditions by using the numerical integra-
tion procedure discussed in the last section. Three cases are

considered:

Case I, TH(d) = 1/2 TI(O), nH(d) = 1/2 nI(O) (92a) -
Case II, ’I‘H(d) = 1/10 TI(O), nn(d) = 1/2 nI(O) ' (92b)
Case III, TH(d) = 1/2 TI(O), nH(d) = 1/10 nI(O) (92c)

For all cases, ul(O) = uz (d) = 0. Case I is dealt with in depth
whereas the other two cases are discussed only to illustrate certain
‘differences that occur‘at low Reynolds number, For large Re, all
cases considered behave in the same manner. The reference values
are those at the hot wall,

The direction of integration is opposite to that of the vapor
flow. This is analogous to the situation that exists in numerically
~501vi_ng the oné dimensional viscous simck equations, Von Mises f15].
In the shock problem the direction of flow is supersonic to subsonic,

Because a saddle point exists on the subsonic side of the shock and a

55
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nodal point on the supersonic side, the direction of integration is
always taken to be subsonic to supersonic. ‘An atterﬁpt was made to
determine if such singularit'ies existed at the hot and cold walls but
due to the complex nature of the equations no definite results were
obtained. Despite this, the_ numerical procedure employed to solve
cases I, II and III simply will not march forward from the hot wall
without eventually blowing ui) at some point in the ﬁow field for-

Re > 2. Therefore, the cold plate is positioned atx = 0.

The six moment equations used in the numerical énalysis are
equations (42‘), (43), (50), '(51), (52), and (53). These equatioﬁs
along with the expressions for density (45), pressure (46), Tex (47),
heat flux (48), and the evaporation coefficient (49) give a complete
picture of the flow field subject to 'the boundary conditions prés-
cribed (54). |

As pointed out before, each casé is solved as an initial value
problem. A one dimensional array, ALF, contains six eiements
corresponding to ;1(0), El (0), El (0), ;1_2(1), [1.2(1), and _52(1).
These are the boundary conditions specified by (54) and either (92a),
(92b), or (92c) depending on the casec considered. Note that the
subscript (1) and (2) are reversed when the cold wall béecomes x = 0,
YO(4), YO(S), and YO(6) are the initial values guessed at x = 0 for
| 32(0). EZ(O),_ and '3'2(0). With ALF(1), ALF(2), ALF(3), YO(4),

YO(5), and YO(6) given and a Re specified, the numerical integration
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proceeds'forward from ; =0tox =1 in steps of 0.01 by using a
fourth order Runge-KuttaAscheme (Appendix C). For casel,
ALF(1) =1/2, ALF(2) = 0, ALF(3) = 1 at the cold wall (x = 0) and
ALF{4) =1, ALF(5) =0, ALF'(G) =.2 at the hot wall (; =1). Note
that Y1 to Y6 (equation (87)) is defined in computer langué.ge as Y(J),
J =1 to 6. If the values for Y (4), Y(5), and Y(6) at x = 1 are not
equal to ALF(4), ALF(5), and ALF(6) within a specified error,
0.001, then an iterative scheme is devised to change the initially
guessed values YO(4), YO(5), and YO(6) until | ALF(J) - Y(J)| <
0.001, J =4,5,6. The details of the iterative scheme are given in
_ Appenciix C. |

The integration step size was changed to see if it had any
effect on the result. Two schemés were tried: D = 0,001 across -t:he
entire flow field and D = 0. OQl near the two walls and D = 0. 01 in
the rest of the flow field. The numerical resuli:s were essentially
unchanged from those given by using D = 0,01,

Figures 3, 4, and 5 indicate how ;2(0), EZ(-O), and -52(0) change
as Re increases from 0.01 to 100 for cése I. Similarly, Figures 6,
7, and 8 show how -r_fl(l), Hl(l), and _8—1(1) behave over this Re range.’
It is worthwhile to note that 1?2(0), Tl_z (0), and BZ(O) approach limiting |
values 0.6702, -.4105, and 1. 553 respectively for Re > 10, ;1(1)
(Figure 6) is a bell shaped curve which has a peak value of 0,835 at

Re = 1.8 and approaches 0. 646 as Re - 100. -u-l(l) (Figure 7) has a
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maximum-value of 0.405 at Re = 3 0 and decreases to 0.37 at Re =
100, Finally, El(l) (Figure’ 8) approaches 1,73 as Re —"100.

The behavior of the mean vapor velocity u(x) for case I is illus-
trated in Figure 9. At Re = 0.01 u is cénstant. As Re increasgs
from Re = 0..01 to Re = 1,0, the curve for \T(x) has an essentially
constant positive slope from x=0 to; = 1. Physically 'this means
-the flow accelerated from the hot wall to the cold one. As l:he'
magnitude of'Re‘ becomes greéter than one a point of inflection begins
to appear in the -u-(;) curve. Finally, for Re > 6 the curve E(;)

. becomes concave upward excepf at thé cold wall where it is concave
dqwnward. Physipally, this corresponds to a flow which accelerate's'
at the hot wall reaches a maxinun value and tsen the deceleraies
toward the cold wall. Atx =0, 65 the flow starts to aécelerate again.
uis negative because the direction of integration (cold to hot} is
opposite to that of the‘vapor motioﬁ. Velocity.curvesA are plotted up
to Re = 12,2, Figure 10 contains three of the U curves shown in
Figure 9 relplotl:ed on a scale comparable to that used i‘n later
figures. Figure 11 and Figure 12 indicate how 5-(;) and E(;) behave
for Re = 12.0, . |

The curves for El (;) and l—l-z (;c-) are illustrated f_qr Re =11.7
in Figure 13. Similarly Hl (x), ?{2 (x) and 's'l (x), é‘z (x) are plotted in
"Figures 14 and 15 respectively for Re = 11.7. These figures

indicate the existence of two regions of rapid change: one at the
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cold wall and the other at the hot wall.

Past Re‘ = 12.0, it becomes increasingly difficult to use the
ﬁethod of.integration discussed pre‘vioﬁsly. However, at Re = 12, O,.
;2(0), :2(0), and EZ(O) have almost rea‘ched their limiting vaiues, i.e.,
their values remain unchanged as Re = ® . This fact allows use of"
the integration technique of shooting-splitting, The forward marching
scheme used is a fourth order Runge-Kutta with_én integration step
size D = 0.0001 ub to x = 0.00S‘and D = 0.001 past 0.005. The _
integration process is begun at x = 0 for Re = 100.0 (Kﬁ = 0.0125 by
(41)) and the values 1 (0), U, (0), B, (0), n,(0), ‘62(0) and B, (0) for
Re = 12.0 are used to start the integration. As the integration

moves forward u, will eventually go to zero at some x <1 and the
integration process is stopped at tﬁat point. Next, the process is
"~ started o-ver at x = 0 but for a value of EZ (0) tflat is 0.01 greater

The new curve.for :1_2 (;) eventually becomes

than u, (0)p . = 12, 0

greater than one at some X. u,= lis used as a convenient‘cut'off
point, ‘-If one takes the average between these two values for EZ(O)
and repeats the process either an up curve or a down curve will
result, -The averaging process is repeéted until EZZ(O) for the up
curve and down curve match to five decimal points. Then at a point
X = .15 (arbitrarily selected, Figure 16), the values of Yi for the

two curves are averaged and a new curve is found. This curve

either goes up or down, but more importantly, it extends further
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out into the flow field than any of the curves starting at x = 0. If this
new curve is up for .the sake o!? argument, then its values of Yi and
those of the down curve which starts at x = 0 are averaged at x = 0,15
and a ncw up or down curve is calculated. In this manner the flow
behavior for large Re can be found (Figures 16, 17, 18, .19, 20, 21,
22, 23, and 24),

Each pointlat which El—z (;) = 0 can be thought of as a position of
the hot wall and the corresponding value of Re is found by mu1t1p1y1ng
x 100 since Re is linear in distance. Furthermore, the shootmg—
sphttm0 technique can be carried out past x >1 and the resulting Re
would be greater than 100, From Figures 18, 16, and 22 the various
values of Hl’ El’ and §1 C‘orreSPdnding to :2= 0 are piotted on
Figures 6, 7, and 8. Note that;= I corresponds to Re = 100 1n the
scale used in Figure 16 to Figure 24. ﬁoweve1*, each Re corres-
ponding to HZ (x) = 0 can also have x = 1 just by redefining the scale
since it is linear.

Figures 16 to 24 indicate that an equilibrium situation is

attained at x = 0.2, Past this point u = Gl: 22 n, = ;1-2= ;1-, and

El: BZ: B = 2T as the limits in the above figures jllustrate. As Re
becorn_es large the regions of rapid change become thinner (Figures 9
and 18), In the large Re limit the flow field has the following
behavior: the velocity U accelerates from its values at the hot plate

(x = 1) to an equilibrium speed and then decelerates from equilibrium
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as the vapor approaches the cold wall. Very near this plate u
accelerates again; both the density and temperature at x = 1 decrease
to théir respective values in the equilibrium state whereas near the
condensing surface the temperature decreasés and the density
increases to a peak value and then decreases slightly. For Re = @,
the éotail enthalpy (Figure 25) decreases slightly at the hot wall and
then approaches equilibriﬁm. Near the condensing surface, it
decreases strongly.  This flow pattern for large Re is like the result
found by Collins and Edwards [ 16 ] except they found H to be constan‘t
at the evaporating surface. In the low Re limit (Re = 0.01).\7, ?, -§,
etc., are found to be essentially constant,

In Figure 26 the velocity Uis plotted for case III (92c). For
Re = 0.01 U is constant. In the ?ange of Re between 0.1 and 1,0 the
vapor'yeloc.ity u decelerates over most of the flow field and then
accelerateé very near the cold wall. This behavior is completely
different from that of case I in the same Re range. For Re > 1,0
the ucurves follow the same pattern as those in Figure 12 (case I).
Furthermore, HZ(O), EZ (0), and .B—Z (0) approach limiting values ground
Re = 14 and the shooting-splitting technique can be uséd.

Case II (92b) has boundary conditions exactly opposite to those
of case III. The mean velocity u for case II (Figure 27) exhibits the
same behavior as U in case I ;Fi.gure 9) except that there is no

acceleration at the hot wall.,
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Finally, from equation (86), there results

u o, /RT d
Re . = Iy . m =/§MuRe
P /YRT, "1

where u = mean velocity. Since Mu~ 0(l) and y = 5/3, Re ~ O(Re).-
, ' . pu



Chapter 7

CONCLUSIONS

The mc; plate problem is solved for a monatomic vapor
composed of Maxwell molecules. Lees' moment method is used to
obtain a set of six non-linear moment equations whose solution,
subject to the boundary conditions of this problem, is continuous
over the range of flow conditions from free molecular to continuum.

T o obtain an anaiytical solution to this problem, small devia-
tions from equilibrium are considered. A first order perturbation
analysis is used and the mean velocity u is the small parameter in '
the problem. For Kn = «, the flow properties and the vapor
velocity are constant between the two plates and the Qalue of the
evaporation 'coefficient is one. When Kn =0, the flow is either
density or temperature dominated depending on whether AT /AN <
2.19 or‘A'i‘_/Aﬁ > 2.19 respectively. The evaporation coefficient in
this limit is 0,83, The Repu based on the mass f].l'l.X at the cold wall
can be small or large depending on the magnitude of d/v.

The two plate problem for strong non-equilibrium conditions
is solved as an initial value problem. The direction of integration
is opéosite to that of the vapor motion. Threce cases are considered:

For Re =0 the vapor properties and velocity are constant across the
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flow field. As Re = ®, two regions of rapid change appear: one at
the hot wall and one at the cold wall. The flow accelerates at the hot
wall to an equilibrium velocity, decelerates from equilibrium to a
local minimum velocity as it approaches the cold wall, and then
accclerates again., The vapor temperature and density éecrease at
the hot wall to their respective equilibrium values. However, at the
cold wall the vapor density increases rapidly, reaches a peak and
then drops slightly whereas the vapor temperature decreases.
Finally, the total enthalpy decreases slightly at the hot s(zrfac_e to an

equilibrium value and then drops sharply at the cold wall.
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APPENDIX A

' 3
DERIVATION OF EQUATIONS OF TRANSFER FOR Q(Ci) = rncj

As previously discussed, Maxwell's inverse fifth power law of
molecular repulsion is used in evaluating the collision integral, For

such molecules the collision integral becomes

= f_-—-—_——— ' cde .
2Q (m *m,)K H ff Jdecdc, , (A.1)
where
‘ o 2m )
J = J f (Q'-Q) de a da (A.2)
(8] (o] .

and a and ¢ are geometric parameteré d-escribing the collision
process. The description and interpretation of the parameters
appearing in equation (A.2) and the subsequent development have béen
treated by a number of authors. Forrdetails the reader is referred
to the work of Lees [ 91 whose nomenclature and methodology is
adopted in this work.

For the moment of interest the difference in Q resulting from
a collision is

Q'-0Q

3
- )

= (CJ

' 3
- ) | (a.3)

To express Q'-Q in terms of Cj’ use is made of the expression for c3
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originally developed by Maxwell [9],

c! = cj+ (cl—c)j'cosz(e‘/Z) + \/VZ- (cl-c)§ sin 6' cos (e+w )

j jk

(A.4)

where 8', ¢, and wjk are angles in various planes which describe the

“binary collision. By substituting this expression into (A.3), Q'-Q

becomes
1 : 2 2
9—-—9- = 3c?a + 3c.2a' cose'+ 3c.a2+ 6c.aa'cose!' +3c.a' cos ¢!
m J J J J J
2 2 2 3
+a3+ 3a a'cose' +3aa' cos e' +a! cos3e' : (A.5)
where
2
a = (c,-c). cos (8'/2)
1 j
1J 2 2
1 = - - - ]
a 5 A% (cl C)j sin 0
el = e+ Ww .

jk

After placing this expression for Q'-Q into equation (A.2), integration
over ¢ is performed first. It is noted that terms proportional to odd
powers of cos me or sinme¢ (m # 0) integrate to zero over the 27

. . . . 2 .

limit hence terms involving cos ¢' and cos ¢! integrate to zero,

. . . 2 . .
Using the fact that integration of cos (¢ + wjk) is m and rearranging,

the integral of over ¢ becomes:
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A 2

3 3., 2 2
jo (c"j -cj)de = Zn{(cl-c)j[ Cj1+ Cjcj1+ cj]cos (8'/2)

1 5 2 3_2 ' 27 . .,
-Z[Cj<-2-(cl—c)j -EV >+(c1+ c)j(cl- C)j ]sme

—}I(cl—c),[ —Zﬁi(cl--c)j2 - %Vz] sinze' cosz(e'/Z)}. | (A. 6a)

Since this expression must be symmmetrical with respect to the probe

and colliding gas molecules, an equivalent statement of the bracketed

term ifx equation (A.w6a) is
{ } = (emep),l c§1+ e et cj‘ ] gos?(e'/Z)
-+ ¢ = (cl-c)? - %vz 1+ (c+cl)j(;1-c)§] sin” '
- (c-cl)j[-zé (cl-c)? - _3-V2:| sinZG' coszl(e'/Z) .. (A.‘.6b)v

vy 2

To obtain symmetry in the expression for J the bracketed terms in

equation (A.b6a) and (A.6b) are summed and divided by two to yield
r3.2 9 290 .2
m - .
= —_— + —_— - —— - 3 1
J 7 (cl c)j[2 \' > (cl c)j ] jon sin 6' a da . (A.7)

Maxwell has evaluated the integral in eéquation (A.7) and the result is
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w

' 2 .
A, = [ sin"0'ada= 1.3682. (A.8)
. |
Thus, the equation for J is
! 3.2 9 2
J o= ZmAz(°1+C)j['é'V AN C)j]' (5'9)

To allow physical interpretation at a later point in the develop-
- . 2 . .
ment it is convenient to express V in terms of thermal velocities

since the mean velocity of probe and colliding particles are identical

3
v2= b (cl-C)‘.l2 = 2 (c21+ cz- 2C,C), . (A.10)

i=1 i=1

In making this substitution the collision term for a single component

gas may be written as

1 g 3.2 9 2 -
= — i — - — -
AQ 4n1A2/2mK JJ ffl(cl+c)j [2 V > (Cl C)j ] dc dcl. (A.11)

Evaluation of the integral using ¢ = Cj+ u, yields
J J

1 2 — 3 2 2 2 2
0 7 mn A2 mK 5 Clel + CjC +2uj(Cl +C)

9[—3 3 2 2
22 c.+c.+2u.c.+c.]}. AL 12
2 1j j J(lJ J) ( )
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Again, calling upon the symmetry between probe and colliding
particles, there results

=1 2 2 3
AQA—-Z-mnA\/ [2 C +3uC > j-9uC :]
(A.13)

To simplify this expression use is made of the equation derived by

Maxwell for viscosity based on a local full range Maxwellian
velocity distribution

= KT . . (A, 14)

u. =
% A2 vVZ2mK

With this result the collision terfn becomes

, 2 2
rQ = pB[c.c /2 +u. C -ic?-su.c?]. (A.15)
oL ¢ j 2 75770

In terms of the shear stress and heat flux it may be rewritten

_ P . 3 3
AQ - _[ .+ 3u.T.. - 3 C. ] . . A' 16
wl % %720 ( )

The corresponding moment equation is
| 3 L3 0 3. pfrl. 3

———— ’ + — = X —

S [ml fcj dc] axi [m’[fcicj dc " [q 3u J L ]
' (A. 17)



APPENDIX B

INTEGRALS USED TO EVALUATE MOMENT EQUATIONS

C

J' e'gz/B g = %/ﬁ[l + erf<7(é—>] | (B. 1)

- 00

2
[ §e_§/8d§‘—‘--§—e-c /8 | (B.2)

ja §2e-§ /Bdg = -i—[TTB?)]%[l +erf<7-§—>:| -—;—BcenczlB (B.3)h
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APPENDIX C

COMPUTER PROGRAM

The six moment equations that are solved in the subroutine

DRVTYV are:

continuity, i =1

— dHl o — dHZ
(u1 1 /Bllnxl)—:- + (uZEZ- Bz/"xz) —

dx dx

dEl du n dg n ds

+RE L+ nE —2 +1/2 X, —r_1/2 —2x 2=

gk 22 & ﬂ'B'lld}E /B, 2 &%

x-momentum equation i = 2

<[3/2+u3E+u1X1/_;n>—+<2 \/—-x+.2u1§lE1 d—i-l-'

dx

2 dx

E dB |
+ (24,n,E,- 2n,%, / > 2 L =0 - (€.2)
X

RE. dp S ' dn
171 1 - -2 - - 2
+ —_—t ([ 32/2 + uZJEZ- uzx2 /32/n> ——d;
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x-momentum flux, i =3
dn
-3 -2
[(u +15uB>E+/ (s+u)x]—1-
1 1 1 1 —
dx

2 — —
*_ t——
[3n u El l.5n B nlu1 Xl =

2 — —_—— — —_—— —_—
-Ren{Znu2—2B+lnBE+nBE)}=O (C. 3)

B dn da /B dg

1 1 —_— - 1 —_— 3 - 1 3 1

E + —— —— + - —_— —

[B (o X)) — +n BB — +[’1“1E1 ZhN T X =
X dx dx

/ dn. du. B d
[B(uE :E*E_E _E_‘Z_+[H'£E_.3_ﬁ _B_Zx:l__B_?_
2 272 2 — 22 2 — 2 272 2 2 i 2 -—

dx dx
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x-energy flux, i = 5
B dn.
52 —2— —4 1,3 7 ——= 1
2B+ + — = —
[<4 By t4u, B+, >E,1+«/ - <°1+2 4y 1>X1:| =

n EI 6B.+45°)X. + 47, 25.B. + E . +
[nl’J?(Bl up Xy t4n @B, “) ]"'"

dx

[—1<'2§§ + 45 >E +4xxlu1f ]—- +
[<§-s-:+4a;-s;+a:>-sz-/§-<::; )

[-nz = (68, + 40 )x +4n,@u Bt )Ez] .+

[ 2(28+4“2>E /—'E;'XZJ}ZT‘L
: X

4 - — e -
-é-Ren[ZB-u(B +nBE+nBZE2)]=O (C.5)

flux of Ci in x direction, i = 6

-3 -2 —2— —4 —3 5 - —
<231+3“181+“1>E1+ T(“1+§'“151)X1] *

oo [ o _  qdy
D u (4u +6B )E +4n1 = (u1+81)Xl — *

- _ dx

i} 8. - [B ds
3 —t + — —_—
n(+u) )E 3n ) f = xl] — 4
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- r3=2 _—2- 5=
_<ZBZ+3‘1282+ u2>]3 / ( +2 )XZ:IEJF
i [B, _, _ du.
n,u,(4u, +6s JE, - 4n, %(u22+32)x2]—:‘-2- +
dx

—

E2 d§2 - =
[3n <—_+ >E 3nu -—-X]——- +2Ren[+2B
2 il 2 Cb_{- ) 3

'. B -
3—— o — [ B2 .
"1 NE, - Xz)J =0 | (C. £)

where

2 2
—2 -
Uy /8y

X. = e

1 -2

2 e

7 =2 +n E

n = -Z-(n 1 n )

- . n2u2E2+ nlu E +< / - / >

nlE1+n L

The complete computer program is listed on the following

pages.
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C MAIN PROGRAM--INTEGRATION FROM COLD TO HOT WALL
IMPLICIT REAL *8 (A-H,O-2)
REAL #8 K,L,M
DIMENSION ALF(6), YO(6), W(6), B(3), K(6,4), Z(6),
Y (6),DYO(3),DY1(3), YOSTO(6), YISTO(6), C(3, 3),
L(6),M(6),DYA(3), F(6,6),G(6)
INTEGER CTR1,CTR2
CALL $TIME$ (45)
3 READ (5,10, END = 9999)(ALF (1), I=1,6), (YO(T), |
J = 4,6),RE
10 FORMAT (6E12. 8)

A =1,0/DSQRT (3.141592D¢C)

15 CTRZ2 =0

20 X =0.0

CTR1 =0
C - XIS THE INDEPENDENT VARIABLE RANGING FROM 0
TO 1
C Y(I) I=1 TO 6 REPRESENTS THE VARIABLES N, U, AND BETA
Y(1) = ALF(1)
Y (2) =.AI_F(2)'-
Y(3) = ALF(3)
Y(4) = YO(4)

Y(5) = YO(5)
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Y(6) = YO(6)
C THI:EVAPORATRMJCOEFFKHENT:=EVCOEF;THEVTOTAL
ENTHALPY = TOTH
CALL PHYSPR (Y,ALF,RHO, U, P, TEMP, TAUXX, °
QX,TOTH, B, EVCOEF, &800)
WRITE (6,30) RE, (Y(I), I=1,6), (B(1),I=1,3)
30 FORMAT (1H1,38X,'FLAT PLATE EVAPORATION-
CONDENSATION PROBLEM'
C///1H, 'INITIAL CONDITIONS RE ="', El2.4,
Y(1) ="', El12.4,
C'Y(2)="', El12.4, 'Y(3) =", El2.4, ' Y{4) =",
El12.4 /1H,
C21X, 'Y(5) ="', El12.4, ' Y() =", El2.4, '

B(l) ="', El2.4, °

CB(2) ="', E12.4, ' B(33)="', El2.4 ///1H,
'CTRl X
C D Y (1), Ly

Y (3) Y (4)', '
C Y (5) Y(6)'/1H, 17X, 'RHO U
C P ', 'TEMP TAUXX QX
TOTH

C  EVCOEF!')

60 CALL DRVTV(Y,W,RE,F, G, &800)



C CTR1 MULTIPLIED BY 100 GIVES THE POSITION X.

C PRINT OUT OCCURS ONLY AT THE SPECIFIED POSITIONS

GIVEN BY CTRI

IF

IF

IF

IF

IF

IF

IF

IF

IF

IF
IF
IF
IF
IF
IF
IF
.IF
IF
IF

IF

(CTR1
(CTR1
(CTR1
(CTR1

(CTR1

(CTR1

(CTR1
(CTR1

(CTR1

(CTR1

(CTR1
(CTR1
(CTR1
(CTRI1
(CTR1
(CTR1
(CTR1

(CTR1

(CTR1

(CTR1

.EQ.

.EQ.

cEQ.
. EQ.
. EQ.
. EQ.
.EQ.
cEQ,
. EQ.
.EQ.
<EQ.

.EQ.

<EQ.-

EQ,

. EQ.

cEQc

«EQ.

. EQ'

+EQ.

LEQ.

0)
1)
2)
5)

10)

15) -

20)
25)
30)
10)
50)
60)
70)
75)
80)
85)
90)
95)
98)

99)

GO TO 215
GO TO 215
GO TO 215
GO TO 215
GO TO 215
GO TO 215
GO TO 215

GO TO 215

GO TOZ215

GO TO 215
GO TO 215
GO TO 215
GO TO 215
GO 'i‘O‘ZlS
GO TO 215
GO TO215
GO TO 215
GO TOZ215
GO TO 215

GO TO 215
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IF (CTR1 L.EQ. 100) GOTO?2l5
IF (X .LT. 1.0) GO TO 217
215 CALL PHYSPR (Y,ALF,RHO, U, P, TEMP, TAUXX,
0QX, TOTH, B, EVCOEF, &800)
WRITE (6,216) CTRI,X,D, (Y(I),I=1,6),RHO, U, P,
TEMP, TAUXX,QX,TOTH,EV
CCOEF -
216 FORMAT (IH, I4, 1PS8E13,4/1H, 11X, 1PBEI3.4)
IF (X - 1,0) 217, 5070, 5060
C INTEGRATE Y(J) TO X+D USING 4TH ORDER RUNGE-KUTTA.
217 D=0.01
C CORRECT LAST STEP FOR COMPUTER ROUND OFF ERRORS.
IF ((X+D) .LT. 1.0) GO TO 218
D=1.0 - X
X=1.,0
GO TO 220
218  X=X+D
CTR1 = CTRI +1
220 CONTINUE
C NEXT EVALUATE THE COEFFICIENTS USED IN
EXPRESSION FOR Y (J)
DO 230 1I=1,6

K(I,1) = D * W (1)



230

231

232

233
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Z(I) = Y(I) + 0. 50 * K(I,1)
CALL DRVTV(Z,W,RE,F,G, &800)
DO 231 I=1,6
K{,2) =D * w()
Z(I) = Y({I) +0.50 * K(I,2)

CALL DRVTV(Z,W,RE,F, G, &800)

‘DO 232 1I=1,6

K(@,3)= D * W{)

Z() = Y() +K({, 3)

CALL DRVTV(Z,W,RE,F,G, &800)
NOW INTEGRATE Y(J) TO X+D USING THESE
COEFFICIENTS

DO 233 1I=1,6

Y(@) = Y(@) + (K(@, 1) +D % W(1) )'/ 6.0D0 +
(K(I,2) + K@,3))/ 3.0D0 |

IF (Y(3) .GE.0) GO TO 240

WRITE (6, 1)

1 FORMAT (1HO, 10X, 'SQUARE ROOT OF NEGATIVE

NUMBER Y(3)')

 WRITE (6.4) ((F(1,3), J=1,6), W(I),G(D),1=1, 6)

4 FORMAT (1X1P 6E 15.7)

GO TO 800

240 IF (Y(6) .GE.0) GO TO 245
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WRITE (6,2)
2 FORMAT (1HO, 10X, 'SQUARE ROOT OF NEGATIVE
NUMBER Y(6)')
WRITE (6,9) ((F(,J), J=1,6), W(1),G(),I=1, 6)
9 FORMAT (IX1P6E 15.7)
GO TO 800
245 CONTINUE
IF (X-1.0) 60,60, 5060
5060 WRITE (6, 5062) X
5062 FORMAT (IHI, 10X, 25H X GREATER THAN
1.0, X = ,E16.7)
5070 WRITE {6, 5600) (B(1), 1=1,3), (ALT(T), J=4,06)
5080 FORMAT (IH, 'B(I), I=1,3 =' 1P3E13.4, 4X,
'ALF(J), J=4,6 = ', 1P3E -

C13.4)

C ITERATION TECHNIQUE: CHANGE YO(4) FIRST,

C LEAVING YO(5) AND YO(6) UNCHANGED; USE THE

C 0D VALUE OF YO(4), CHANGE YO(5), AND LEAVE
C YO(6) UNTOUCHED; NEXT USE THE OLD VAI.UES. OF
C YO(4) AND YO(5) AND CHANGE YO(6). FINALLY

C CHANGE YO(4), YO(5), AND YO(6) SIMULTANEQUSLY.

C REPEAT PROCESS UNTIL ABS(ALF(I)-Y(I)) <« ERROR.



DO 6000 J=k,6 108
IF ((DABS(ALF(J) - Y(J))) .GT. 0.001) GO TO
6010

6000 CONTINUE
GO TO 3

6010 IF (CTRZ .GT. 0) GO TO 6020
CTR2 = CTR2 +1
DO 6011 J=4,6
YOSTO(J) = YO(J)

6011 YISTO(J) = Y(J)
DYO(l) = (ALF(4) - Y{4)) / 10.0
DYO(2) = (ALF(5) - Y(5)) / 10.0
DY6(3) = (ALF(6) - Y(6)) / 10.0
DYA(l) = ALF(4) - Y(4)
DYA(Z_)»= ALF(5) - Y(5)
DYA(3) = ALF(é) - Y (6)

\ >6012 YO(4) = YOSTO(4) + DYO(1)
GO TO 20

6020 IF (CTR2 .GT. 1) GOTO 6030
CTR2 = CTR2 +1
DY1(l) = Y(4) - YISTO(4)
DY1(2) = Y(5) - Y1ISTO(5)
DYI1(3) = Y(6) - YISTO(6)

DO 6021  J=1,3
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6021 C(J,1) = (DY1(J) / DYO(1))

YO(4) = YOST O(4)

6013 YO(5) = YOSTO(5) + DYO(2)

GO TO 20

6030 VIF (CTR2 .GT. 2) GO TO 6040
CTR2 = CTR2 +1
DY1(l) = Y(4).- Y1ISTO(4) -
DY1(2) = Y(5) - YISTO(5)
DY1(3) = Y(6) - YISTO(6)
DO 6031. J=1,3

6031 C(J,2) = (DYL(J) / DYO2) )
YO(5) = YOSTO(5)

6014 YO(6) = YOSTO(6) + DYO(3)
GO TO 20

6040 DY1(l) = Y(4) - YISTO#4)
DY1(2) = Y(5) - YISTO(5)
DY1(3) = Y(6) - YISTO(6)
DO 6041 J=1,3

6041 C(J,3) = (DY1(J) /‘DYO (3) )

C SUBROUTINE DMINV IS AN IBM MATRIC INVERSION
C PROGRAM - DOUBLE PRECISION.

CALL DMINV (C,3,Q,L,M)

IF (Q .EQ. 0.0) GO TO 6070
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YO(4) = YOSTO(4) + C(1,1) * DYA(1) + C(1,2) * -
DYA(2) + C(1,3) * DYA(3)
YO(5) = YOSTO(5) + C(2, 1) * DYA(L) %0(2,2) *
DYA(2) + C(2,3) * DYA(3)
YO(6) = YOSTO(6) + C(3,1) * DYA(1) + C(3,2) *
DYA(2) + C(3,3) * DYA(3)
GO TO 15
6070 WRITE (6,6071)
6071 FORMAT (1H1, 10X, 29HDETERMINANT OF C
EQUALS ZERO)
GO TO 9999
9999 CALL EXIT
C THE FOLLOWING INCREMENTAL CHANGES ARE MADE
'C ONLY IF Y(3) OR Y(6) BECOME NEGATIVE, THIS IS
C DONE IN ORDER TO RESTART THE PROGRAM AGAIN.
800 IF (CTR2 .EQ. 0) GO TO 9999
IF (CTR2-2) 801, 802, 803
801 DYO(l)l = -DYO(1)/2.
ITEK = ITEK + 1
IF (ITEK .EQ. 5) GO TO 9999
GO TO 6012
802 DYO(2) = -DYO(2)/2.

ITEK = ITEK + 1
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IF (ITEK. EQ. 5) GO TO 9999

GO TO 6013

803 DYO(3) = -DYO(3)/2.
ITEK = ITEK + 1
IF (ITEK. EQ. 5) GO TO 9999
GO TO 6014
END

C SUBROUTINE PHYSPR
SUBROUTINE PHYSPR (Y,ALF,RHO, U, P, TEMP,
TAUXX,QX,TOTH, B, EVCOEF, %)
c PURPOSE - TO EVALUATE PHYSICAL PROPER-

| TIES IN THE FLOW FIELD
IMPLICIT REAL %8 (A-H,0-Z)
DIMENSION Y (6), ALF(6), B(3) |
A =1,0 /[DSQRT (3.141592D0)
IF (Y(3).GE.0) GO TO 1000
WRITE (6, 1001)

1001 FORMAT (1HO, 10X, 'SQUARE ROOT OF A
NEGATIVE NUMBER Y(3) SUB P')

'RETURN 1

1000 IF (Y(6) .GE. 0) GO TO 1002

WRITE (6, 1003)

1003 FORMAT (1HO, 10X, 'SQUARE ROOT OF A
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NEGATIVE NUMBER Y(6) SUB P')

RETURN 1
1002 R1 = DSQRT (Y(3))

R2 = bSQRT (Y (6))

El1 = 1.0 + DERF (Y(2) / R1)

E2 = 1.0 + DERF (-Y(5) /R2)

X1 = DEXP (-(Y(2) ** 2)/Y(3)) |

X2 = DEXP (-(Y(5) ** 2) /Y (6))

ARX1 = A * R1 * X1

ARX2Z2 = A * R2 * X2

Y2S Y (2):}:;}:2

Y55 = Y (5)%i2
RHO = 0.50 # (Y(1) * E1 + Y (4) % E2)

IF (RHO,LT.0.0) RETURN 1

B(l) = .50 % (Y(1)>'r‘(YA(2)*E1+ARX1.) 1Y (4)%
(Y(5) * E2-ARX2))

U = B(1) / RHO

US = Uk

UMY2S = (U - Y (2))%%2

UMY 55 = (U - Y(5))%%2

UX2MY2 =2,0 % U - Y(2)

UX2MY5 = 2,0 * U - Y(5)

P = (Y(1)/6.0D0) # ((UMY2S + 1. 50%Y (3))%
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El - ARX1 % UX2MYZ2 )

C+ (Y (4)/6.0D0) * ((UMY5S + 1. 50%Y (6))*E2 +
ARX2 * UX2MY5 )
TEMP = P/RHO
TAUXX = -(1.0D0/3.0D0)=:<(Y(1)>:<(UMst=:<Ei -
UX2MY2 * ARX1 ) + Y (4) %

C(UMY5S*E2 + UX2MY5 * ARX2 ) )
QX = .250 % (Y(1)*(-2.50%Y(3) + UMY2S ) *
(U-Y (2))*E1 + (2. 0%Y(3) +

CY2S +3,0% (US - U*Y(2)) J*ARX1) - Y{4)*
((2.50 * Y(6) + UMY5S ) *

C(U-Y(s))*Ez + (2. 0%Y (6) + Y55 + 3.0 *(US -
U*Y (5)) }* ARX2 ) )
TOTH =2.50 # TEMP + .50 * US
SIGMXX = TAUXX - P
B(2) = RHO*US - SIGMXX
B(3) = RHO*U #* (1,50 * TEMP + . 50% US) -
U * SIGMXX + QX
EVCOEF =2,0 * B(1) / (A* (ALF(1) * (DSQRT
(ALF(3))) - ALF(4) * (D

CSQRT(ALF(6)))))
RETURN |

END



114

C SUBROUTINE DRVTV

1001

1000

1003

1002

SUBROUTINE DRVTV(Y,W,RE,F, G, %)
IMPLICIT REAL #*8 (A-H,0-2Z)

PURPOSE

OBTAIN VAL UES OF DERIVATIVES WJ AT
GIVEN X KNOWING YJ AND RE

DIMENSION Y (6), W(6), B(3),G(6), F (6, 6)

A =1.0/DSQRT (3. 141592D0)

IF (Y(3) .GE.0) GO TO 1000

WRITE (6,1001)

FORMAT (1HO, 10X, 'SQUARE ROOT OF A

NEGATIVE NUMBER Y(3) SUB D')

RETURN 1 |

IF (Y (6) .GE.O0) GO 'O 1002

WRITE (6, 1003)

FORMAT (1HO, 10X, 'SQUARE ROOT OF A

NEGATIVE NUMBER Y(6) SUB D')

RETURN 1
R1 = DSQRT (Y(3))

R2 = DSQRT (Y (6))
-El1 = 1.0 +DERF (Y(2)/R1)

E2 = 1.0 + DERF (-Y(5)/R2)

X1 = DEXP ‘(- (Y (@2) *%2) [/ Y(3).)

X2 = DEXP (-(Y(5) *%2) / Y(6))
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ARX!1 = A * R1 # X1

ARX2 = A * R2 * X2

YAXDRI = Y(1) * A * X1 / R1

H

YAXDR2 = Y(4) * A * X2 / R2

YIE = Y(1) * E1

n

Y4E = Y(4) * E2

Y2E = Y@2) * E1

Y5E = Y(5) * E2
Y12 = Y(1) * Y(2)
Y45 = Y (4) * Y (5)
Y2S = Y (2)%%2
Y5S = Y (5)%%2

RHO =, 50 % (Y1E + Y4E)
B(1) = 0.5 % (Y(1) * (Y2E + ARX1) + Y (4) *
(Y5E - ARX2) )
U = B(1)/RHO
USQ = U2
B(2) = .50 * (Y(L) % ( ( .50 * Y(3) +Y2S) *
El + Y(2) * ARX1) +
C Y(4)* ( (.50 %Y(6) +Y55 ) % E2 - Y(5) % ARX2))
B(3) = .250 * (Y(1) * ( (2.50 * Y(3) + Y2S ) *
Y2E + (2.0 % Y(3)+ Y25 ) *

C ARX1 ) +Y(4) # ( (2.50 % Y(6) + Y5S) % Y5E -
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G (2.0 % Y(6) + Y55) * ARX2 ) )
F(1,1) = Y2E + ARX1
F(1,2) = YIE
F(1,3) = 0.5 * YAXDR]
F(1,4) = Y5E - ARX2
F(1,5) = YAE
F(1,6) = -0, 5 * YAXDR2
F(2,1) = (.50 * Y(3) + Y25) * E1 + Y(2) * ARX]
F(2,2) = 2.0 % Y(1) * (Y2E + ARX1)
F(2,3) = .50 % Y1E
F(2,4) = (.50 * Y(6) + Y55) * E2 - Y(5) * ARX2
F(2,5) = 2.0 % Y(4) % (YSE - ARX2)
F(2,6) = .50 * Y4E |
F(3,1) = (Y25 + 1.5 % Y(3))%Y2E + ARX1#
(Y (3) +Y28)
F(3,2) = 3.0 % Y(1) % ((Y2S + 0. 50 * Y(3)) *
El +Y(2) * ARX1)
"F(3,3) = 1.5 % Y(1) * (Y2E + ARX1)
CF(3,4) = (Y55 + 1.5 % Y(6)) * Y5E - ARX2 *
(Y(éj + ¥55)
F(3,5) = 3.0 * Y(4) % (Y55 + 0.50 * Y(6))*
E2 - Y(5) *ARX2)

F(3,6) = 1.5 % Y(4) * (Y5E - ARX2)
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F(4,1) = Y(3) * (Y2E + ARX1)
F(4,2) = Y(3) * YIE
F(4,3) = Y(1) * (Y2E + 1.5 * ARX1)
F(4,4) = Y(6) * (Y5E - ARX2)
F(4,5) = Y(6) * Y4E
F(4,6) = Y(4) * (Y5E - 1.5 % ARX2)
F(5,1) = ( (1.25 % Y(3) + 4.0 * Y25 )
Y(3) + Y25%%2 ) % E1

C +Y(2)* ARX1 # (Y2S +3.50 % Y(3) )
F(5,2) = Y(1) * ARX1 % ( 6.0 * Y(3) + 4.0 * Y25)
+4,0 % YIE * Y(2) % (2.0 * Y(3) + Y25 )
F(5,3) = Y1E % (2.5 % Y(3) + 4.0 * Y2S) +
4.0 * Y12 % ARX]1
F(5,4) = (Y(6) % (1.25 % Y(6) + 4.0 * Y5S) +
Y55##%2 ) % E2 - ARX2

C * Y(5) % (Y55 +3.50 % Y (6) )
F(5,5) = -Y(4) * ARX2 * (6.0 * Y(6) + 4.0 *
Y5S) + 4.0 * Y4E

C * Y(5) % (2.0 * Y(6) + Y55 )
F(5,6) = YAE * (2.5 % Y(6) + 4.0 * Y5S) - 4.0 *
Y45 * ARX2 |
F(6,1) = (Y(3) % (0.75 % Y(3) + 3.0 * Y2S) +

Y 2S%k:42 ) * El1 +



118
C Y(2) * ARXL * ( Y2S +2.5 % Y(3) )
F(6,2) = Y12 * (4.0%Y2S + 6. 0%Y(3) ) * E1L +
4.0 % Y(1) #* ARX1 * (Y2S + Y(3) )
F(6,3) = 3.0 % YLIE * (0. 5%Y (3) + Y25) +
3.0 % Y12 % ARX]
F(6,4) = ( (.750 % Y(6) +3.0 % Y55) % Y (6) +
Y55%52 ) % E2 - Y(5)
C % ARX2 % (Y55 +2.5 % Y(6) )
F(6,5) = Y45 # (4, 0%Y55 + 6.0 % Y(6) ) * E2 -
4.0 % Y(4) % ARX2 * (Y55 + Y (6) )
F(6,6) = 3.0 % Y4E * (0.5 % Y (6) + Y5S) -

3.0 % Y45 &+ ARX2

if

G(l) = 0.0 -
G(2) = 0.0
G(3) = -(2.0D0/3.0D0) * RHO * RE * (2.0 *
RHO * USQ - 2.0 *
CB(2) +.50 % (Y 1E % Y(3) + Y4E + Y(6) ) )
G(4) = -G(3)
G(5) = (4.0D0/3.0D0) * RHO * RE * (2.0 * B(3)
- U* (BR2) + YIE
C* Y(3) + Y4E * Y(6) ) )
G(6) = 2.0 * RHO * RE * (-U % .(B(2) +.250 *

(YIE *Y(3) + Y4E
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C*Y(6)))+2.0% B(3)-.750 % Y(L) * Y(3) %
(Y2E + ARX1 ) -
C.750 * Y (4) * Y(6) * (Y5E - ARXZ ) )
C SUBROUTINE DSIMQ IS AN IBM PROGRAM WHICH
C .SOLVES A SYSTEM OF SIMULTANEOUS LINEAR
C EQUATIONS - DOUBLE PRECISION.
49 CALL DSIMQ(F,G,6,KS)
DO 50 1=1,6
50 W(I) = -G(I)
IF (KS.EQ. 0) GO TO 51
WRITE (6, 52)
52 FORMAT (1HO, 10X, 'KS IS ONE SINGULAR
SOLUTION"') |
RETURN 1
51 CONTINUE
RETURN
"END
C SHOOTING-SPLITTING MAIN PROGRAM WHICH
STARTS AT X=0.
IMPLICIT REAL *8 (A-H,O-2)
REAL *8 K,L,M
DIMENSION ALF(6),YO(6), W(6), B(3), F (6, 6),

G(6),Y(6), 2(6), K(6, 4)



120

INTEGER CTR1
READ (5,10) (ALF({),I=1,6),YO(4),YO(6),RE

10 FORMAT (6E12.8/3E12.8) up (o) is the critical parameter

in shooting-splitting technique.
3 READ (5,31, END = 9999) YO(5) It is constant near x=0 and
drops off sharply at x=1,
31 FORMAT (E12.8)
A =1.0/DSQRT(3.141592D0)
20 X=0.0
CTR1 =0
Y(1) = ALF(1)
Y(2) = ALF(2)

Y(3) = ALF(3)

Y (4) = YO(4)
¥ (5) = YO(5)
Y (6) = YO(6)

CALL PHYSPR (Y,AI.F,RHO,U,_P,TEMP,

. TAUXX,QX,TOTH, B, EVCOEF, &800)
WRITE (6,3) RE; (Y(),I=1,6), (B(1),I=1,3)

30 FORMAT (1H1,38X, 'FLAT ?LATE EVAPORA TION -

CONDENSATION PROBLEM

c///1H, 'INITIAi. CONDITIONS RE ="',

El2.6, ' Y(1) ="', EIl12.6,

C'Y@)=", Eiz.é, ''Y(3)="', El12.6,

Y(4) =", El2.6 /H,
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c2lX, 'Y(5) ="', E12.6, ' Y(6) ="', El2.6 ,

B(1) = ', E12.6,

CB(2)="', E12.6 , ' B(3)="', E12.6 ///1H,

'CTR1 X

C D Y (1), ' Y (2) Y (3) Y(.4)'.'
C Y (5) Y(6)'/1H, 17X, 'RHO U

C P ', 'TEMP TAUXX QX TOTH!','

C EVCOEF ')
60 CALL DRVTV(Y,W,RE,F,G, &800)
IF (CTR1 .EQ. 10000) GO TO 800
215 CALL PHYSPR(Y,ALF,RHO, U, P,TEMP,
| TAUXX,QX,TOTH, B, EVCOEF, &800)
WRITE (6,216) CTRI,X,D, (Y (1),1=1, 6),
RHO, U, P, TEMP, TAUXX,QX, TOTH, EVCOEF
216 FORMAT (1H, 14, 1P8E13.4/1H,11X, 1P8E13.4)
INTEGRATE Y(J) TO X+D USING 4TH ORDER
R-K AND VARIABLE STEP SIZE
217 IF (CTR1 .LT. 50) GO TO 81
D = 0.001
GO TO 82
81 D = 0.0001

82 X =X+D

IF (CTR1 .LT. 50) GO TO 91
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230

" 231

232

233
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CTR1l = CTR1+10
GO TO 220

CTR1 = CTR1 +1

NEXT EVALUATE THE COEFFICIENTS USED IN
EXPRESSION FOR Y (J)

DO 230 I=1, 6

K(I, 1) = D * W(I)

Z() = Y (1) + 0. 50 * K, 1)

CALL DRVTV(Z, W,RE,F, G, &800)
DO 231 1=1, 6

K(I,2) = D * W(I)

Z(1) = Y(I) + 0. 50 * K(I,2)

CALL DRVTV(Z, W, RE, F, G, &800)
DO 232 1=1, 6

K(I,3) = D * W(1)

Z(1) = Y(1) + K{I, 3)

CALL DRVTV(Z, W,RE, F, G, &800)

‘NOW INTEGRATE Y(J) TO X+D USING THESE"

COEFFICIENTS

DO 233 1=1,6
Y(I) = Y() + (K(, 1) + D*W(I) }/6.0D0 + (K(I,2)

+ K(1,3))/3.0D0
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IF (Y(5) .GE. 0.0) GO TO 61
IF (Y(5) .LE. -1.0) GO TO 62
IF (Y(3) .GE. 0) GO TO 240
WRITE (6, 1) |
1 FORMAT (lHO, 10X, 'SQUARE ROOT OF
NEGATIVE NUMBER Y (3)')
GO TO 800
240 IF (Y(6) .GE. 0) GO TO 245
WRITE (6,2)
2 FORMAT (1HO, IOX,"SQUARE ROOT OF
NEGATIVE NUMBER Y (6) ')
GO 'O 800
245 CONTINUE
IF (X-1.0) 60, 60,800
9999 CALL EXIT
800 WRITE (6, 69) (B(1),1=1,3)
69 FORMAT (IHO, 'B(I), I=1,3=' 1P3EL5. 6)
GO TO 3
61 WRITE (6, 63)
63 FORMAT (1HO, 10X, 'Y(5) IS GREATER THAN
OR EQUAL TO ZERO ')
WRITE (6,65) (B{),1=1,3)

65 FORMAT (1HO, 'B(I), I=1,3 = ' 1P3E16.6)
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GO TO 3
62 WRITE (6, 64)

64 FORMAT (1HO, 10X, 'Y(5) IS LESS THAN OR
EQUAL TO MINUS ONE')
WRITE (6,67) (B(), 1=1,3)

67 FORMAT (LHO, 'B(I),1=1,3 = ' 1P3El6.6)
GO TO 3
END

C ' SHOOTING-SPLITTING MAIN PROGRAM WHICH STARTS

AT X = NUMBER.
IMPLICIT REAL *8 (A-H, O-Z)
REAL #8 K,L,M
DIMENSION ALF(6), YO(6), W(6), B(3), F (6, 6.).G(6).Y(6) ,2(6)»,K(6,4)

INTEGER CTRI

C ALF(I) =VALUES OF UP CURVE AT X; YO(T) = VALUES OF DOWN CURVE AT X.
3 READ (5,10,END=9999) (ALF(1),I=1, 6), (YO(i),I=1,6),
CTR1,X,RE |
10 FORMAT (6E12.8/6E12.8/15,2E12. 8)
AI=1'. 0/DSQRT (3.141592D0)
DO 991=1,6
99 Y(I) = (ALF(I) + YO(I))/2.0DO
CALL PHYSPR(Y,ALF,RHO,U,P,TEMP-, _

TAUXX,QX,TOTH, B, EVCOEF, &800)
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WRITE (6,30) RE, (Y(1),I=1,6), (B(I),I=1,3)
30 FoﬁMAT (1H1, 38X,'FLAT PLATE EVAPORATION

-CONDENSATION PROBLEM '

.C///lH, 'INITIAL CONDITIONS RE =',
El2.6, ' Y(1) ="', El12.6,

C' Y(2)="', El2.6, ' Y(3)="', El2.6, X
Y(4) =", E1é.6 /1H ,

C21X, 'Y(5) ="', E12.6, ' Y(6) ="', El2.6, '
B(l) ="', El2.6, !

CB(2) ="', El2.6, ' B(3)="', El2.6 /1111,
'CTRI1 X

C D Y1), ' Y@) Y(3) Y(4)',

C Y(5)  Y(6)/1H, .17x, 'RHO U

C P ', 'TEMP; TAUXX QX TOTH','

C EVCOEF')

60 CALL DRVTV(Y,W,RE,F,G, &800)
IF (CTR1 .EQ. 20000) GO TO 800
215 CALL PHYSPR(Y,ALF,RHO, U, P,TEMP,
TAUXX,QX,TOTH, B, EVCOEF, &800)
WRITE (6,216) CTRI,X,D, (Y(I), I=1,6),RHO,
U,P,TEMP,TAUXX,QX,TOTH, EVCOEF
216 FORMAT (1H, I5, ip8E13.4/1H,11x,1P8E13.4)

INTEGRATE Y(J) TO X+D USING 4TH ORDER
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R-K AND VARIABLE STEP SIZE

o
]

0.001
X = X+D
CTRI = CTRI + 10
NEXT EVALUATE THE COEFFICIENTS USED IN
EXPRESSION FOR Y (J)
D0 230 1=1,6
K(I,1) =D * W(I)

230 Z(1) = Y(1) + 0.50 * K(1,1)
CALL DRVTV(Z,W,RE,F,G,&800)
D0 231 1=1,6
K(1,2) = D * W(I)

231 Z(1) = Y(1) + 0.50 * K(1,2)
CALL DRVTV(Z,W,RE,F,G,&800)
D0 232 I=1,6

K(1,3) =D * W(I)
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232 z(1) = Y{I) + K({I, 3)

CALL DRVTV(Z, W,RE, F, G, &800)
C NOW INTEGRATE Y (J) 'ifo X+D USING THESE

COEFFICIENTS
DO 233 1I=1,6

233 Y(I)=Y(@) + (K(I,1) + D*W(1))/6.0D0 +
(K(1,2) + K(I,3))/3.0D0
IF (Y(5) .GE. 0.0) GOTO 61
IF (Y(5) .LE. -1.0) cb TO 62
IF (Y(3) .GE. 0) GOTO 240
WRITE (6,1)

1 FORMAT (1HO, 10X, 'SQUARE ROOT OF

NEGATIVE NUMBER Y(3')‘)
GO TO 800

240 IF (Y(6) .GE. 0) GO TO 245
WRITE (6,2)

2 FORMAT (1HO, 10X, 'SQUARE ROOT OF

NEGATIVE NUMBER Y (6) ')
GO TO 800

245 CONTINUE
IF (X-2.0) 60;60,800

9999 CALL EXIT

800 WRITE (6,69) (B(I), 1=1,3)



69
61
63
65
62

64

67
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FORMAT (lHO, 'B(I), I=1,3 = ' 1P3ElS. 6)
GO TO 3 |

WRITE (6, 63)

FORMAT (1HO, 10X, 'Y(5) IS GREATER THAN

OR EQUAL TO ZERO')

WRITE (6,65) (B(l), I=1,3)

FORMAT (1HO, 'B(I), I=1,3 =' 1P3El6.6)
GO TO 3
WRITE (6, 64)

FORMAT (1HO, 10X, 'Y(5) IS L. ESS THAN OR
EQUAL TO MINUS ONE') |

WRITE (6,67) (B(1),1=1,3)

FORMAT (1HO, 'B(I), I=1,3 = ' 1P3EL6.6)
GO TO 3

END



APPENDIX D

A NAVIER-STOKES TYPE FORMULATION OF THE
LEES' MOMENT EQUATIONS

The six moment equations to be used are

continuity
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X-momentum
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x-momentum flux

B
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x-energy flux
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Rl . 1 + -
+ 28 [ 4(B,* 3 (1B E +n,8,E,)) + 2B,

3
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"7 (Bl /-? Bz /—>] (39)

and
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2 2
-u /8 -u/B
. 1 1 272 N
where R is the gas constant, Xl-‘- e , X2= e , El—

1+ erf ul/ \/81 , and E2= 1 +erf (- U.Z/»/ BZ ). These equations can

The result is

be rewritten in terms of speed ratio S =

vZRT

continuity
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energy

x-momentum flux
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(D. 5)

(D.7)
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'x-fluxofCZ
X
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d—[n1u1<z——4+—-—z+1>E1+n1u1<1+3——2>
X . S S s s.V/r
1 1 1 1
X
4,3 1 3 : 4 5 1 2
=+ =+ - =
}n2u2<4s4 SZ 1>E2 n2u2<1+232>s/_ ]
2 2 2 2V T
2
2p 1, ME Y L E,
i ICRETEE e <)
1 2
3 3
3 M uyE, n, W E,
+ 2B, - —( + )
2 52 52
1 2
.3 3
3 nl}xlul nzxzuz _
'Z( 3 T3 >J 0
s/« s Vu
1 2
and
2
u’E
Tt (2—-1>X
n 45| 65/_
nuz
+2222 (z—_-1>x2]
45, 6S /_

(D. 8)

(D. 9)

To develop a Navier-Stokes type representation from equations

(D.3) to (D.9), a procedure analogous to that used by Chapfnan and
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Enskog is followed here. Let

n. = n(l +n=::l<)

n, = n(l +n:)

2
= + *
S1 S(1 Sl)
= + *
S.2 S(1 SZ)
= + o
uy u(l Ul)
u, = u(l + UZ)
where the differences
n, - n, = n(n1 - n2)
- = * - U*
uyps vy = (U - U5
S1 - S2 = S(S1 - S’z‘)

express a small deviation from equilibrium. By placing these

expansions into equations (D.1) and (D.3) to (D.9), there results

continuity

nu = B (D.10)

x-momentum

_SZ
(]

[(zsz+ 1)(s’i"- sz) - (n’l“- nz)]> = B,
(D.11)

nu2<l + —}7 + -;-
25 sv/w
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energy
2
5 sk 1 1 e—sz 7 b3 B e-S
T (3 - P (54) Pz Um0 3
S 2”7 svm s J/n
2 .
o =S _
1-S,) = -;—SZ+-§--——?—§>>=B3 ' (D. 12)
s/ 28
x-momentum flux
52
Ed_ (2+ %)nu3 ) ‘% B nuf 2 [(Zsz+1)(s*1‘-s’2") - nlnl)]
* S b s/
(D. 13)
x-energy flux
< G+ + 2 PETNE s R nu3[<82+ 1- -5 ) s7-55)
s” 2s W . 4S
1 1 % % 7 % o
-7 (1t = > (n)-n,) + — (U, - Ug)] = (D. 14)
25 4S s/
x-flux of C2
X
2
-S
D [ AR SCp iy
| s” 28 W s/m
(U U

———3—)] (D. 15)

[@ZH- >(s s%) -—<1+ 2>(n “nd) 42
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where the combinations

density
2
% P P e 25 -S £ Ry
ny '|'_n2 + (nl-nZ) erfS + — e (Sl-SZ) =0
o
continuity
2
' . b3 o ) e-s
(U +U%) + (U - U") erfS + (n™ - n®) ——
1 2 1 2 1 2 s/
P sk e—sz 2S -SZ ot e e-SZ P
+(U - U,) - = (8]-S,) - ——(S,-5§) = 0
s/m Ve sV
temperature
L ot KA ZSe—SZ E B3 e_Sz 0%
-(S’l" +SZ). - (Sl—SZ) erfS + (SI—SZ) +———(S1 SZ)
™ S
e st e-SZ ate e-SZ S ’—SZ ate e
-(n] - ny) —— - (UT-U3) - =——(n] - n,)
s/ s/m  3/w
S e-s2 2536-52
+ 3 (- sz’) + (5,-83) = 0
Ju 3/m

were used to simplify the above equations. Hence, in combining

equations (D.11) and (D. 13), the x-momentum equation becomes

2 1 1 u d .3 2N
““(”;S‘Z"zaﬁa;(“?>“)*52- (D 16)
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A similar expression can be obtained for the energy equation,

but it is less obvious. Define

dx SZ

v o L(ard 2y,
x S 28

7 = §—<2+%+——-—34>u3.
x S 25

The differential equations (D.13) to (D. 15) simplify to

X = -2Q(@) [ @7+ 1)as - oN)

C - dame [P Y- L)
1]

e oo [ (- i 1o 2

+ é-“—z
4587
2
e—s
‘where Q(S) = -E . u . » AS = Si—S'Z', AN = n=1'< - n;:, and
S/ '

Au = Ul*— U2 These three equations are solyed for AS, AN, and Au
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in terms of X, Y, and Z. The solution is

. S'Y 8 Sz 2 X
bus iET T Gw )G
S'Y 7 ZS2 X
AS = -Ea-—'i‘-é- Ou -3(S +_)—6
2
s?@es®+1)y 7 s+ 1)s%z  exstst 1)

AN = = w Y3 Tae " T Qg

By placing these results into the energy equation (D.12), we have

3
nu’ [ 5 " 31 d g 5 N 3
2+ =+ [-—-—-(2+—-—+-—-—- u
2
4L S p u 2 u dx SZ 254)
d 3 2

+ — (2 + — = . .
& ICE-DERDEE N AT

Equations (D. 16) and (D.17) do not reduce to the one dimen-
sional viscous equations even though they are similar in form.
2, 2
d/dx (2 + 3/S7)u is related to a stress term and
o, 2 4 3 .
d/dx (2 +8/S '+ 5/25")u” can be thought of as a conduction type
term. If thed/dx [ ] terms are zero, then (D.10), (D.16) and

(D.17) reduce to the inviscid equations
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IS
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or

& s
. ._._+__ = . ‘,.
pu < 2 zRT> B3

The stress term in equations (D.16) and (D. 17) is not invariant
under a Galilean transformation as is the stress term in the one-
dimensional viscous equations. This not surprising since Lees' two

sided Maxwellian is referenced to a particular coordinate system.



